Upload to Main
This commit is contained in:
0
datasets/__init__.py
Normal file
0
datasets/__init__.py
Normal file
BIN
datasets/__pycache__/__init__.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/__init__.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/caltech101.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/caltech101.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/data_manager.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/data_manager.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/dtd.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/dtd.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/eurosat.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/eurosat.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/fgvc_aircraft.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/fgvc_aircraft.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/food101.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/food101.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/imagenet.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/imagenet.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/imagenet_a.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/imagenet_a.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/imagenet_r.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/imagenet_r.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/imagenet_sketch.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/imagenet_sketch.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/imagenetv2.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/imagenetv2.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/new_da.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/new_da.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/oxford_flowers.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/oxford_flowers.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/oxford_pets.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/oxford_pets.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/pascal_voc.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/pascal_voc.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/stanford_cars.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/stanford_cars.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/sun397.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/sun397.cpython-39.pyc
Normal file
Binary file not shown.
BIN
datasets/__pycache__/ucf101.cpython-39.pyc
Normal file
BIN
datasets/__pycache__/ucf101.cpython-39.pyc
Normal file
Binary file not shown.
63
datasets/caltech101.py
Normal file
63
datasets/caltech101.py
Normal file
@@ -0,0 +1,63 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
from .dtd import DescribableTextures as DTD
|
||||
import deepcore.methods as s_method
|
||||
import numpy as np
|
||||
|
||||
IGNORED = ["BACKGROUND_Google", "Faces_easy"]
|
||||
NEW_CNAMES = {
|
||||
"airplanes": "airplane",
|
||||
"Faces": "face",
|
||||
"Leopards": "leopard",
|
||||
"Motorbikes": "motorbike",
|
||||
}
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class Caltech101(DatasetBase):
|
||||
|
||||
dataset_dir = "caltech-101"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "101_ObjectCategories")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_Caltech101.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
train, val, test = DTD.read_and_split_data(self.image_dir, ignored=IGNORED, new_cnames=NEW_CNAMES)
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
481
datasets/data_manager.py
Normal file
481
datasets/data_manager.py
Normal file
@@ -0,0 +1,481 @@
|
||||
import torch
|
||||
import torchvision.transforms as T
|
||||
import numpy as np
|
||||
from tabulate import tabulate
|
||||
from torch.utils.data import Dataset as TorchDataset
|
||||
import os
|
||||
from dassl.utils import read_image
|
||||
|
||||
from dassl.data.datasets import build_dataset
|
||||
from dassl.data.samplers import build_sampler
|
||||
from dassl.data.transforms import INTERPOLATION_MODES, build_transform
|
||||
from .new_da import RandomResizedCropPair, build_transform_pair
|
||||
from PIL import Image
|
||||
|
||||
def build_data_loader(
|
||||
cfg,
|
||||
sampler_type="SequentialSampler",
|
||||
data_source=None,
|
||||
batch_size=64,
|
||||
n_domain=0,
|
||||
n_ins=2,
|
||||
tfm=None,
|
||||
is_train=True,
|
||||
dataset_wrapper=None,
|
||||
weight=None,
|
||||
):
|
||||
# Build sampler
|
||||
sampler = build_sampler(
|
||||
sampler_type,
|
||||
cfg=cfg,
|
||||
data_source=data_source,
|
||||
batch_size=batch_size,
|
||||
n_domain=n_domain,
|
||||
n_ins=n_ins
|
||||
)
|
||||
|
||||
if dataset_wrapper is None:
|
||||
dataset_wrapper = DatasetWrapper
|
||||
|
||||
# Build data loader
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
dataset_wrapper(cfg, data_source,transform=tfm, is_train=is_train,weight=weight),
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
num_workers=cfg.DATALOADER.NUM_WORKERS,
|
||||
drop_last=is_train and len(data_source) >= batch_size,
|
||||
pin_memory=(torch.cuda.is_available() and cfg.USE_CUDA)
|
||||
)
|
||||
assert len(data_loader) > 0
|
||||
|
||||
return data_loader
|
||||
|
||||
|
||||
|
||||
def build_data_loader_mask(
|
||||
cfg,
|
||||
dataset,
|
||||
sampler_type="SequentialSampler",
|
||||
data_source=None,
|
||||
batch_size=64,
|
||||
n_domain=0,
|
||||
n_ins=2,
|
||||
tfm=None,
|
||||
is_train=True,
|
||||
dataset_wrapper=None,
|
||||
weight=None,
|
||||
):
|
||||
# Build sampler
|
||||
sampler = build_sampler(
|
||||
sampler_type,
|
||||
cfg=cfg,
|
||||
data_source=data_source,
|
||||
batch_size=batch_size,
|
||||
n_domain=n_domain,
|
||||
n_ins=n_ins
|
||||
)
|
||||
|
||||
if dataset_wrapper is None:
|
||||
dataset_wrapper = DatasetWrapperMask
|
||||
|
||||
# Build data loader
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
dataset_wrapper(cfg, dataset,data_source,transform=tfm, is_train=is_train,weight=weight),
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
num_workers=cfg.DATALOADER.NUM_WORKERS,
|
||||
drop_last=is_train and len(data_source) >= batch_size,
|
||||
pin_memory=(torch.cuda.is_available() and cfg.USE_CUDA)
|
||||
)
|
||||
assert len(data_loader) > 0
|
||||
|
||||
return data_loader
|
||||
|
||||
def select_dm_loader(cfg,dataset,s_ind=None,is_train=False):
|
||||
|
||||
tfm = build_transform(cfg, is_train=is_train)
|
||||
if is_train:
|
||||
dataloader = build_data_loader(
|
||||
cfg,
|
||||
sampler_type=cfg.DATALOADER.TRAIN_X.SAMPLER,
|
||||
data_source=list(np.asarray(dataset)[s_ind]) if s_ind is not None else dataset,
|
||||
batch_size=cfg.DATALOADER.TRAIN_X.BATCH_SIZE, #cfg.DATALOADER.TRAIN_X.BATCH_SIZE*
|
||||
n_domain=cfg.DATALOADER.TRAIN_X.N_DOMAIN,
|
||||
n_ins=cfg.DATALOADER.TRAIN_X.N_INS,
|
||||
tfm=tfm,
|
||||
is_train=is_train,
|
||||
dataset_wrapper=None,
|
||||
)
|
||||
else:
|
||||
dataloader = build_data_loader(
|
||||
cfg,
|
||||
sampler_type=cfg.DATALOADER.TEST.SAMPLER,
|
||||
data_source=list(np.asarray(dataset)[s_ind]) if s_ind is not None else dataset,
|
||||
batch_size=cfg.DATASET.SELECTION_BATCH_SIZE,
|
||||
n_domain=cfg.DATALOADER.TRAIN_X.N_DOMAIN,
|
||||
n_ins=cfg.DATALOADER.TRAIN_X.N_INS,
|
||||
tfm=tfm,
|
||||
is_train=is_train,
|
||||
dataset_wrapper=None,
|
||||
)
|
||||
|
||||
return dataloader
|
||||
|
||||
class DataManager:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg,
|
||||
dataset,
|
||||
s_ind=None,
|
||||
custom_tfm_train=None,
|
||||
custom_tfm_test=None,
|
||||
dataset_wrapper=None,
|
||||
weight=None,
|
||||
):
|
||||
# # Load dataset
|
||||
# dataset = build_dataset(cfg)
|
||||
|
||||
# Build transform
|
||||
if custom_tfm_train is None:
|
||||
###pair is for
|
||||
tfm_train_pair = build_transform_pair(cfg, is_train=True)
|
||||
tfm_train = build_transform(cfg,is_train=True)
|
||||
else:
|
||||
print("* Using custom transform for training")
|
||||
tfm_train = custom_tfm_train
|
||||
|
||||
if custom_tfm_test is None:
|
||||
tfm_test = build_transform(cfg, is_train=False)
|
||||
else:
|
||||
print("* Using custom transform for testing")
|
||||
tfm_test = custom_tfm_test
|
||||
|
||||
|
||||
# Build train_loader_x
|
||||
|
||||
train_loader_x = build_data_loader_mask(
|
||||
cfg,
|
||||
dataset,
|
||||
sampler_type=cfg.DATALOADER.TRAIN_X.SAMPLER,
|
||||
data_source=list(np.asarray(dataset.train_x)[s_ind]) if s_ind is not None else dataset.train_x,
|
||||
batch_size=cfg.DATALOADER.TRAIN_X.BATCH_SIZE,
|
||||
n_domain=cfg.DATALOADER.TRAIN_X.N_DOMAIN,
|
||||
n_ins=cfg.DATALOADER.TRAIN_X.N_INS,
|
||||
tfm=tfm_train_pair,
|
||||
is_train=True,
|
||||
dataset_wrapper=dataset_wrapper,
|
||||
weight=weight
|
||||
)
|
||||
|
||||
|
||||
train_loader_xmore = build_data_loader(
|
||||
cfg,
|
||||
sampler_type=cfg.DATALOADER.TRAIN_X.SAMPLER,
|
||||
data_source=list(np.asarray(dataset.train_x)[s_ind]) if s_ind is not None else dataset.train_x,
|
||||
batch_size=cfg.DATASET.SELECTION_BATCH_SIZE,
|
||||
n_domain=cfg.DATALOADER.TRAIN_X.N_DOMAIN,
|
||||
n_ins=cfg.DATALOADER.TRAIN_X.N_INS,
|
||||
tfm=tfm_train,
|
||||
is_train=True,
|
||||
dataset_wrapper=dataset_wrapper,
|
||||
weight=weight
|
||||
)
|
||||
|
||||
# Build train_loader_u
|
||||
train_loader_u = None
|
||||
if dataset.train_u:
|
||||
sampler_type_ = cfg.DATALOADER.TRAIN_U.SAMPLER
|
||||
batch_size_ = cfg.DATALOADER.TRAIN_U.BATCH_SIZE
|
||||
n_domain_ = cfg.DATALOADER.TRAIN_U.N_DOMAIN
|
||||
n_ins_ = cfg.DATALOADER.TRAIN_U.N_INS
|
||||
|
||||
if cfg.DATALOADER.TRAIN_U.SAME_AS_X:
|
||||
sampler_type_ = cfg.DATALOADER.TRAIN_X.SAMPLER
|
||||
batch_size_ = cfg.DATALOADER.TRAIN_X.BATCH_SIZE
|
||||
n_domain_ = cfg.DATALOADER.TRAIN_X.N_DOMAIN
|
||||
n_ins_ = cfg.DATALOADER.TRAIN_X.N_INS
|
||||
|
||||
train_loader_u = build_data_loader(
|
||||
cfg,
|
||||
sampler_type=sampler_type_,
|
||||
data_source=dataset.train_u,
|
||||
batch_size=batch_size_,
|
||||
n_domain=n_domain_,
|
||||
n_ins=n_ins_,
|
||||
tfm=tfm_train,
|
||||
is_train=True,
|
||||
dataset_wrapper=dataset_wrapper
|
||||
)
|
||||
|
||||
# Build val_loader
|
||||
val_loader = None
|
||||
if dataset.val:
|
||||
val_loader = build_data_loader(
|
||||
cfg,
|
||||
sampler_type=cfg.DATALOADER.TEST.SAMPLER,
|
||||
data_source=dataset.val,
|
||||
batch_size=cfg.DATALOADER.TEST.BATCH_SIZE,
|
||||
tfm=tfm_test,
|
||||
is_train=False,
|
||||
dataset_wrapper=dataset_wrapper
|
||||
)
|
||||
|
||||
# Build test_loader
|
||||
test_loader = build_data_loader(
|
||||
cfg,
|
||||
sampler_type=cfg.DATALOADER.TEST.SAMPLER,
|
||||
data_source=dataset.test,
|
||||
batch_size=cfg.DATALOADER.TEST.BATCH_SIZE,
|
||||
tfm=tfm_test,
|
||||
is_train=False,
|
||||
dataset_wrapper=dataset_wrapper
|
||||
)
|
||||
|
||||
# Attributes
|
||||
self._num_classes = dataset.num_classes
|
||||
self._num_source_domains = len(cfg.DATASET.SOURCE_DOMAINS)
|
||||
self._lab2cname = dataset.lab2cname
|
||||
|
||||
# Dataset and data-loaders
|
||||
self.dataset = dataset
|
||||
self.train_loader_x = train_loader_x
|
||||
self.train_loader_u = train_loader_u
|
||||
self.train_loader_xmore = train_loader_xmore
|
||||
self.val_loader = val_loader
|
||||
self.test_loader = test_loader
|
||||
|
||||
if cfg.VERBOSE:
|
||||
self.show_dataset_summary(cfg)
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return self._num_classes
|
||||
|
||||
@property
|
||||
def num_source_domains(self):
|
||||
return self._num_source_domains
|
||||
|
||||
@property
|
||||
def lab2cname(self):
|
||||
return self._lab2cname
|
||||
|
||||
def show_dataset_summary(self, cfg):
|
||||
dataset_name = cfg.DATASET.NAME
|
||||
source_domains = cfg.DATASET.SOURCE_DOMAINS
|
||||
target_domains = cfg.DATASET.TARGET_DOMAINS
|
||||
|
||||
table = []
|
||||
table.append(["Dataset", dataset_name])
|
||||
if source_domains:
|
||||
table.append(["Source", source_domains])
|
||||
if target_domains:
|
||||
table.append(["Target", target_domains])
|
||||
table.append(["# classes", f"{self.num_classes:,}"])
|
||||
table.append(["# train_x", f"{len(self.dataset.train_x):,}"])
|
||||
if self.dataset.train_u:
|
||||
table.append(["# train_u", f"{len(self.dataset.train_u):,}"])
|
||||
if self.dataset.val:
|
||||
table.append(["# val", f"{len(self.dataset.val):,}"])
|
||||
table.append(["# test", f"{len(self.dataset.test):,}"])
|
||||
|
||||
print(tabulate(table))
|
||||
|
||||
|
||||
class DatasetWrapperMask(TorchDataset):
|
||||
|
||||
def __init__(self, cfg, dataset,data_source,transform=None, is_train=False,weight=None):
|
||||
self.cfg = cfg
|
||||
self.data_source = data_source
|
||||
self.transform = transform # accept list (tuple) as input
|
||||
self.is_train = is_train
|
||||
self.data_path = dataset.dataset_dir
|
||||
self.mask_path = os.path.join(dataset.dataset_dir,'mask')
|
||||
# Augmenting an image K>1 times is only allowed during training
|
||||
self.k_tfm = cfg.DATALOADER.K_TRANSFORMS if is_train else 1
|
||||
self.return_img0 = cfg.DATALOADER.RETURN_IMG0
|
||||
|
||||
if weight is not None:
|
||||
self.weight = weight
|
||||
else:
|
||||
self.weight = None
|
||||
|
||||
if self.k_tfm > 1 and transform is None:
|
||||
raise ValueError(
|
||||
"Cannot augment the image {} times "
|
||||
"because transform is None".format(self.k_tfm)
|
||||
)
|
||||
|
||||
# Build transform that doesn't apply any data augmentation
|
||||
interp_mode = INTERPOLATION_MODES[cfg.INPUT.INTERPOLATION]
|
||||
to_tensor = []
|
||||
to_tensor += [T.Resize(cfg.INPUT.SIZE, interpolation=interp_mode)]
|
||||
to_tensor += [T.ToTensor()]
|
||||
if "normalize" in cfg.INPUT.TRANSFORMS:
|
||||
normalize = T.Normalize(
|
||||
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
|
||||
)
|
||||
to_tensor += [normalize]
|
||||
self.to_tensor = T.Compose(to_tensor)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_source)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = self.data_source[idx]
|
||||
|
||||
if self.weight is None:
|
||||
output = {
|
||||
"label": item.label,
|
||||
"domain": item.domain,
|
||||
"impath": item.impath,
|
||||
"index": idx
|
||||
}
|
||||
else:
|
||||
output = {
|
||||
"label": item.label,
|
||||
"domain": item.domain,
|
||||
"impath": item.impath,
|
||||
"index": idx,
|
||||
"weight": self.weight[idx]
|
||||
}
|
||||
|
||||
# img_path = os.path.join('/'.join(item.impath.split('/')[:-1]),'mask',item.impath.split('/')[-1]) ('/').join(item.impath.split('/')[-2:])
|
||||
if self.cfg.DATASET.NAME in ['Food101','Caltech101','DescribableTextures','EuroSAT','UCF101']:
|
||||
mask = read_image(os.path.join(self.mask_path,('/').join(item.impath.split('/')[-2:])))
|
||||
elif self.cfg.DATASET.NAME in ['SUN397']:
|
||||
mask = read_image(os.path.join(self.mask_path,('/').join(item.impath.split('/')[7:])))
|
||||
elif self.cfg.DATASET.NAME in ['ImageNet']:
|
||||
mask = read_image(os.path.join(self.mask_path,('/').join(item.impath.split('/')[7:])))
|
||||
elif self.cfg.DATASET.NAME in ['VOC12']:
|
||||
mask_path = os.path.join(self.data_path,'VOCdevkit/VOC2012/SegmentationClass_All',item.impath.split('/')[-1][:-3]+'png')
|
||||
mask = read_image(mask_path)
|
||||
else:
|
||||
mask = read_image(os.path.join(self.mask_path, item.impath.split('/')[-1]))
|
||||
img0 = read_image(item.impath)
|
||||
mask = mask.resize(img0.size)
|
||||
if self.transform is not None:
|
||||
if isinstance(self.transform, (list, tuple)):
|
||||
for i, tfm in enumerate(self.transform):
|
||||
img = self._transform_image(tfm, img0,img0)
|
||||
keyname = "img"
|
||||
if (i + 1) > 1:
|
||||
keyname += str(i + 1)
|
||||
output[keyname] = img
|
||||
else:
|
||||
img,mask = self._transform_image(self.transform, img0,mask)
|
||||
output["img"] = img
|
||||
output["mask"] = mask
|
||||
else:
|
||||
output["img"] = img0
|
||||
|
||||
if self.return_img0:
|
||||
output["img0"] = self.to_tensor(img0) # without any augmentation
|
||||
|
||||
return output
|
||||
|
||||
def _transform_image(self, tfm, img0,mask):
|
||||
img_list = []
|
||||
for k in range(self.k_tfm):
|
||||
img_list.append(tfm(img0,mask))
|
||||
|
||||
img = img_list
|
||||
if len(img_list) == 1:
|
||||
img = img_list[0][0]
|
||||
mask = img_list[0][1]
|
||||
|
||||
return img,mask
|
||||
|
||||
|
||||
class DatasetWrapper(TorchDataset):
|
||||
|
||||
def __init__(self, cfg, data_source,transform=None, is_train=False,weight=None):
|
||||
self.cfg = cfg
|
||||
self.data_source = data_source
|
||||
self.transform = transform # accept list (tuple) as input
|
||||
self.is_train = is_train
|
||||
self.mask_path = ('/').join(data_source[0].impath.split('/')[:-2])+'/mask'
|
||||
# Augmenting an image K>1 times is only allowed during training
|
||||
self.k_tfm = cfg.DATALOADER.K_TRANSFORMS if is_train else 1
|
||||
self.return_img0 = cfg.DATALOADER.RETURN_IMG0
|
||||
|
||||
if weight is not None:
|
||||
self.weight = weight
|
||||
else:
|
||||
self.weight = None
|
||||
|
||||
if self.k_tfm > 1 and transform is None:
|
||||
raise ValueError(
|
||||
"Cannot augment the image {} times "
|
||||
"because transform is None".format(self.k_tfm)
|
||||
)
|
||||
|
||||
# Build transform that doesn't apply any data augmentation
|
||||
interp_mode = INTERPOLATION_MODES[cfg.INPUT.INTERPOLATION]
|
||||
to_tensor = []
|
||||
to_tensor += [T.Resize(cfg.INPUT.SIZE, interpolation=interp_mode)]
|
||||
to_tensor += [T.ToTensor()]
|
||||
if "normalize" in cfg.INPUT.TRANSFORMS:
|
||||
normalize = T.Normalize(
|
||||
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
|
||||
)
|
||||
to_tensor += [normalize]
|
||||
self.to_tensor = T.Compose(to_tensor)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_source)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = self.data_source[idx]
|
||||
|
||||
if self.weight is None:
|
||||
output = {
|
||||
"label": item.label,
|
||||
"domain": item.domain,
|
||||
"impath": item.impath,
|
||||
"index": idx
|
||||
}
|
||||
else:
|
||||
output = {
|
||||
"label": item.label,
|
||||
"domain": item.domain,
|
||||
"impath": item.impath,
|
||||
"index": idx,
|
||||
"weight": self.weight[idx]
|
||||
}
|
||||
|
||||
# img0 = read_image(item.impath)
|
||||
img0 = read_image(item.impath)
|
||||
# img0 = img0.resize(mask.size)
|
||||
# mask = read_image(item.impath.split('/')[:-1].join('/'))
|
||||
if self.transform is not None:
|
||||
if isinstance(self.transform, (list, tuple)):
|
||||
for i, tfm in enumerate(self.transform):
|
||||
img = self._transform_image(tfm, img0)
|
||||
keyname = "img"
|
||||
if (i + 1) > 1:
|
||||
keyname += str(i + 1)
|
||||
output[keyname] = img
|
||||
else:
|
||||
img = self._transform_image(self.transform, img0)
|
||||
output["img"] = img
|
||||
output['mask'] = 1
|
||||
else:
|
||||
output["img"] = img0
|
||||
|
||||
if self.return_img0:
|
||||
output["img0"] = self.to_tensor(img0) # without any augmentation
|
||||
|
||||
return output
|
||||
|
||||
def _transform_image(self, tfm, img0):
|
||||
img_list = []
|
||||
|
||||
for k in range(self.k_tfm):
|
||||
img_list.append(tfm(img0))
|
||||
|
||||
img = img_list
|
||||
if len(img) == 1:
|
||||
img = img[0]
|
||||
|
||||
return img
|
||||
95
datasets/dtd.py
Normal file
95
datasets/dtd.py
Normal file
@@ -0,0 +1,95 @@
|
||||
import os
|
||||
import pickle
|
||||
import random
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import listdir_nohidden, mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class DescribableTextures(DatasetBase):
|
||||
|
||||
dataset_dir = "dtd"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "images")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_DescribableTextures.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
train, val, test = self.read_and_split_data(self.image_dir)
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
@staticmethod
|
||||
def read_and_split_data(image_dir, p_trn=0.5, p_val=0.2, ignored=[], new_cnames=None):
|
||||
# The data are supposed to be organized into the following structure
|
||||
# =============
|
||||
# images/
|
||||
# dog/
|
||||
# cat/
|
||||
# horse/
|
||||
# =============
|
||||
categories = listdir_nohidden(image_dir)
|
||||
categories = [c for c in categories if c not in ignored]
|
||||
categories.sort()
|
||||
|
||||
p_tst = 1 - p_trn - p_val
|
||||
print(f"Splitting into {p_trn:.0%} train, {p_val:.0%} val, and {p_tst:.0%} test")
|
||||
|
||||
def _collate(ims, y, c):
|
||||
items = []
|
||||
for im in ims:
|
||||
item = Datum(impath=im, label=y, classname=c) # is already 0-based
|
||||
items.append(item)
|
||||
return items
|
||||
|
||||
train, val, test = [], [], []
|
||||
for label, category in enumerate(categories):
|
||||
category_dir = os.path.join(image_dir, category)
|
||||
images = listdir_nohidden(category_dir)
|
||||
images = [os.path.join(category_dir, im) for im in images]
|
||||
random.shuffle(images)
|
||||
n_total = len(images)
|
||||
n_train = round(n_total * p_trn)
|
||||
n_val = round(n_total * p_val)
|
||||
n_test = n_total - n_train - n_val
|
||||
assert n_train > 0 and n_val > 0 and n_test > 0
|
||||
|
||||
if new_cnames is not None and category in new_cnames:
|
||||
category = new_cnames[category]
|
||||
|
||||
train.extend(_collate(images[:n_train], label, category))
|
||||
val.extend(_collate(images[n_train : n_train + n_val], label, category))
|
||||
test.extend(_collate(images[n_train + n_val :], label, category))
|
||||
|
||||
return train, val, test
|
||||
73
datasets/eurosat.py
Normal file
73
datasets/eurosat.py
Normal file
@@ -0,0 +1,73 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
from .dtd import DescribableTextures as DTD
|
||||
|
||||
NEW_CNAMES = {
|
||||
"AnnualCrop": "Annual Crop Land",
|
||||
"Forest": "Forest",
|
||||
"HerbaceousVegetation": "Herbaceous Vegetation Land",
|
||||
"Highway": "Highway or Road",
|
||||
"Industrial": "Industrial Buildings",
|
||||
"Pasture": "Pasture Land",
|
||||
"PermanentCrop": "Permanent Crop Land",
|
||||
"Residential": "Residential Buildings",
|
||||
"River": "River",
|
||||
"SeaLake": "Sea or Lake",
|
||||
}
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class EuroSAT(DatasetBase):
|
||||
|
||||
dataset_dir = "eurosat"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "2750")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_EuroSAT.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
train, val, test = DTD.read_and_split_data(self.image_dir, new_cnames=NEW_CNAMES)
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def update_classname(self, dataset_old):
|
||||
dataset_new = []
|
||||
for item_old in dataset_old:
|
||||
cname_old = item_old.classname
|
||||
cname_new = NEW_CNAMES[cname_old]
|
||||
item_new = Datum(impath=item_old.impath, label=item_old.label, classname=cname_new)
|
||||
dataset_new.append(item_new)
|
||||
return dataset_new
|
||||
71
datasets/fgvc_aircraft.py
Normal file
71
datasets/fgvc_aircraft.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class FGVCAircraft(DatasetBase):
|
||||
|
||||
dataset_dir = "fgvc_aircraft"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "images")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
classnames = []
|
||||
with open(os.path.join(self.dataset_dir, "variants.txt"), "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
classnames.append(line.strip())
|
||||
cname2lab = {c: i for i, c in enumerate(classnames)}
|
||||
|
||||
train = self.read_data(cname2lab, "images_variant_train.txt")
|
||||
val = self.read_data(cname2lab, "images_variant_val.txt")
|
||||
test = self.read_data(cname2lab, "images_variant_test.txt")
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def read_data(self, cname2lab, split_file):
|
||||
filepath = os.path.join(self.dataset_dir, split_file)
|
||||
items = []
|
||||
|
||||
with open(filepath, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
line = line.strip().split(" ")
|
||||
imname = line[0] + ".jpg"
|
||||
classname = " ".join(line[1:])
|
||||
impath = os.path.join(self.image_dir, imname)
|
||||
label = cname2lab[classname]
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
51
datasets/food101.py
Normal file
51
datasets/food101.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
from .dtd import DescribableTextures as DTD
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class Food101(DatasetBase):
|
||||
|
||||
dataset_dir = "food-101"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "images")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_Food101.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
train, val, test = DTD.read_and_split_data(self.image_dir)
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
92
datasets/imagenet.py
Normal file
92
datasets/imagenet.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import os
|
||||
import pickle
|
||||
from collections import OrderedDict
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import listdir_nohidden, mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
from random import sample
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class ImageNet(DatasetBase):
|
||||
|
||||
dataset_dir = "imagenet"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "images")
|
||||
self.preprocessed = os.path.join(self.dataset_dir, "preprocessed.pkl")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.preprocessed):
|
||||
with open(self.preprocessed, "rb") as f:
|
||||
preprocessed = pickle.load(f)
|
||||
train = preprocessed["train"]
|
||||
test = preprocessed["test"]
|
||||
else:
|
||||
text_file = os.path.join(self.dataset_dir, "classnames.txt")
|
||||
classnames = self.read_classnames(text_file)
|
||||
train = self.read_data(classnames, "train")
|
||||
# Follow standard practice to perform evaluation on the val set
|
||||
# Also used as the val set (so evaluate the last-step model)
|
||||
test = self.read_data(classnames, "val")
|
||||
|
||||
preprocessed = {"train": train, "test": test}
|
||||
with open(self.preprocessed, "wb") as f:
|
||||
pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1000:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train = data["train"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
data = {"train": train}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, test = OxfordPets.subsample_classes(train, test, subsample=subsample)
|
||||
|
||||
|
||||
super().__init__(train_x=sample(train,int(len(train)*0.8)), val=sample(test,5000), test=test)
|
||||
|
||||
@staticmethod
|
||||
def read_classnames(text_file):
|
||||
"""Return a dictionary containing
|
||||
key-value pairs of <folder name>: <class name>.
|
||||
"""
|
||||
classnames = OrderedDict()
|
||||
with open(text_file, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
line = line.strip().split(" ")
|
||||
folder = line[0]
|
||||
classname = " ".join(line[1:])
|
||||
classnames[folder] = classname
|
||||
return classnames
|
||||
|
||||
def read_data(self, classnames, split_dir):
|
||||
split_dir = os.path.join(self.image_dir, split_dir)
|
||||
folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir())
|
||||
items = []
|
||||
|
||||
for label, folder in enumerate(folders): ##sub evaluation
|
||||
imnames = listdir_nohidden(os.path.join(split_dir, folder))
|
||||
classname = classnames[folder]
|
||||
for imname in imnames:
|
||||
impath = os.path.join(split_dir, folder, imname)
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
46
datasets/imagenet_a.py
Normal file
46
datasets/imagenet_a.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import os
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import listdir_nohidden
|
||||
|
||||
from .imagenet import ImageNet
|
||||
|
||||
TO_BE_IGNORED = ["README.txt"]
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class ImageNetA(DatasetBase):
|
||||
"""ImageNet-A(dversarial).
|
||||
|
||||
This dataset is used for testing only.
|
||||
"""
|
||||
|
||||
dataset_dir = "imagenet-adversarial"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "imagenet-a")
|
||||
|
||||
text_file = os.path.join(self.dataset_dir, "classnames.txt")
|
||||
classnames = ImageNet.read_classnames(text_file)
|
||||
|
||||
data = self.read_data(classnames)
|
||||
|
||||
super().__init__(train_x=data, test=data)
|
||||
|
||||
def read_data(self, classnames):
|
||||
image_dir = self.image_dir
|
||||
folders = listdir_nohidden(image_dir, sort=True)
|
||||
folders = [f for f in folders if f not in TO_BE_IGNORED]
|
||||
items = []
|
||||
|
||||
for label, folder in enumerate(folders):
|
||||
imnames = listdir_nohidden(os.path.join(image_dir, folder))
|
||||
classname = classnames[folder]
|
||||
for imname in imnames:
|
||||
impath = os.path.join(image_dir, folder, imname)
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
46
datasets/imagenet_r.py
Normal file
46
datasets/imagenet_r.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import os
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import listdir_nohidden
|
||||
|
||||
from .imagenet import ImageNet
|
||||
|
||||
TO_BE_IGNORED = ["README.txt"]
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class ImageNetR(DatasetBase):
|
||||
"""ImageNet-R(endition).
|
||||
|
||||
This dataset is used for testing only.
|
||||
"""
|
||||
|
||||
dataset_dir = "imagenet-rendition"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "imagenet-r")
|
||||
|
||||
text_file = os.path.join(self.dataset_dir, "classnames.txt")
|
||||
classnames = ImageNet.read_classnames(text_file)
|
||||
|
||||
data = self.read_data(classnames)
|
||||
|
||||
super().__init__(train_x=data, test=data)
|
||||
|
||||
def read_data(self, classnames):
|
||||
image_dir = self.image_dir
|
||||
folders = listdir_nohidden(image_dir, sort=True)
|
||||
folders = [f for f in folders if f not in TO_BE_IGNORED]
|
||||
items = []
|
||||
|
||||
for label, folder in enumerate(folders):
|
||||
imnames = listdir_nohidden(os.path.join(image_dir, folder))
|
||||
classname = classnames[folder]
|
||||
for imname in imnames:
|
||||
impath = os.path.join(image_dir, folder, imname)
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
43
datasets/imagenet_sketch.py
Normal file
43
datasets/imagenet_sketch.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import os
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import listdir_nohidden
|
||||
|
||||
from .imagenet import ImageNet
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class ImageNetSketch(DatasetBase):
|
||||
"""ImageNet-Sketch.
|
||||
|
||||
This dataset is used for testing only.
|
||||
"""
|
||||
|
||||
dataset_dir = "imagenet-sketch"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "images")
|
||||
|
||||
text_file = os.path.join(self.dataset_dir, "classnames.txt")
|
||||
classnames = ImageNet.read_classnames(text_file)
|
||||
|
||||
data = self.read_data(classnames)
|
||||
|
||||
super().__init__(train_x=data, test=data)
|
||||
|
||||
def read_data(self, classnames):
|
||||
image_dir = self.image_dir
|
||||
folders = listdir_nohidden(image_dir, sort=True)
|
||||
items = []
|
||||
|
||||
for label, folder in enumerate(folders):
|
||||
imnames = listdir_nohidden(os.path.join(image_dir, folder))
|
||||
classname = classnames[folder]
|
||||
for imname in imnames:
|
||||
impath = os.path.join(image_dir, folder, imname)
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
46
datasets/imagenetv2.py
Normal file
46
datasets/imagenetv2.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import os
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import listdir_nohidden
|
||||
|
||||
from .imagenet import ImageNet
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class ImageNetV2(DatasetBase):
|
||||
"""ImageNetV2.
|
||||
|
||||
This dataset is used for testing only.
|
||||
"""
|
||||
|
||||
dataset_dir = "imagenetv2"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
image_dir = "imagenetv2-matched-frequency-format-val"
|
||||
self.image_dir = os.path.join(self.dataset_dir, image_dir)
|
||||
|
||||
text_file = os.path.join(self.dataset_dir, "classnames.txt")
|
||||
classnames = ImageNet.read_classnames(text_file)
|
||||
|
||||
data = self.read_data(classnames)
|
||||
|
||||
super().__init__(train_x=data, test=data)
|
||||
|
||||
def read_data(self, classnames):
|
||||
image_dir = self.image_dir
|
||||
folders = list(classnames.keys())
|
||||
items = []
|
||||
|
||||
for label in range(1000):
|
||||
class_dir = os.path.join(image_dir, str(label))
|
||||
imnames = listdir_nohidden(class_dir)
|
||||
folder = folders[label]
|
||||
classname = classnames[folder]
|
||||
for imname in imnames:
|
||||
impath = os.path.join(class_dir, imname)
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
567
datasets/new_da.py
Normal file
567
datasets/new_da.py
Normal file
@@ -0,0 +1,567 @@
|
||||
import torch
|
||||
from torchvision.transforms import RandomResizedCrop,InterpolationMode
|
||||
from torchvision.transforms import functional as F
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
import torchvision.transforms.functional as F
|
||||
from torchvision.transforms import (
|
||||
Resize, Compose, ToTensor, Normalize, CenterCrop, RandomCrop, ColorJitter,
|
||||
RandomApply, GaussianBlur, RandomGrayscale, RandomResizedCrop,
|
||||
RandomHorizontalFlip
|
||||
)
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
from dassl.data.transforms.transforms import SVHNPolicy, CIFAR10Policy, ImageNetPolicy
|
||||
from dassl.data.transforms.transforms import RandAugment, RandAugment2, RandAugmentFixMatch
|
||||
from PIL import Image, ImageFilter
|
||||
|
||||
class RandomResizedCropPair(RandomResizedCrop):
|
||||
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
|
||||
super(RandomResizedCropPair, self).__init__(size, scale, ratio, interpolation)
|
||||
|
||||
def __call__(self, img,mask):
|
||||
i,j,h,w = self.get_params(img,self.scale,self.ratio)
|
||||
return F.resized_crop(img,i,j,h,w,self.size,self.interpolation),F.resized_crop(mask,i,j,h,w,self.size,self.interpolation)
|
||||
|
||||
|
||||
class ComposePair:
|
||||
def __init__(self, transforms):
|
||||
self.transforms = transforms
|
||||
|
||||
def __call__(self, img,mask):
|
||||
|
||||
for t in self.transforms:
|
||||
if isinstance(t,Normalize):
|
||||
img = t(img)
|
||||
elif isinstance(t,ToTensor):
|
||||
img = t(img)
|
||||
mask = torch.from_numpy(np.array(mask,dtype=np.float16)).permute(2,0,1)[:1]
|
||||
|
||||
|
||||
###design the mask split
|
||||
mask[mask==255] = 0
|
||||
mask[mask > 1] = 1
|
||||
else:
|
||||
img,mask = t(img,mask)
|
||||
|
||||
return img,mask
|
||||
|
||||
def __repr__(self):
|
||||
format_string = self.__class__.__name__ + '('
|
||||
for t in self.transforms:
|
||||
format_string += '\n'
|
||||
format_string += ' {0}'.format(t)
|
||||
format_string += '\n)'
|
||||
return format_string
|
||||
|
||||
class RandomHorizontalFlipPair(RandomHorizontalFlip):
|
||||
def __init__(self, p=0.5):
|
||||
super().__init__(p)
|
||||
|
||||
def __call__(self, img, mask):
|
||||
if torch.rand(1) < self.p:
|
||||
return F.hflip(img),F.hflip(mask)
|
||||
return img,mask
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
AVAI_CHOICES = [
|
||||
"random_flip",
|
||||
"random_resized_crop",
|
||||
"normalize",
|
||||
"instance_norm",
|
||||
"random_crop",
|
||||
"random_translation",
|
||||
"center_crop", # This has become a default operation during testing
|
||||
"cutout",
|
||||
"imagenet_policy",
|
||||
"cifar10_policy",
|
||||
"svhn_policy",
|
||||
"randaugment",
|
||||
"randaugment_fixmatch",
|
||||
"randaugment2",
|
||||
"gaussian_noise",
|
||||
"colorjitter",
|
||||
"randomgrayscale",
|
||||
"gaussian_blur",
|
||||
|
||||
"random_flip_pair",
|
||||
"random_resized_crop_pair",
|
||||
]
|
||||
|
||||
INTERPOLATION_MODES = {
|
||||
"bilinear": InterpolationMode.BILINEAR,
|
||||
"bicubic": InterpolationMode.BICUBIC,
|
||||
"nearest": InterpolationMode.NEAREST,
|
||||
}
|
||||
|
||||
|
||||
class Random2DTranslation:
|
||||
"""Given an image of (height, width), we resize it to
|
||||
(height*1.125, width*1.125), and then perform random cropping.
|
||||
|
||||
Args:
|
||||
height (int): target image height.
|
||||
width (int): target image width.
|
||||
p (float, optional): probability that this operation takes place.
|
||||
Default is 0.5.
|
||||
interpolation (int, optional): desired interpolation. Default is
|
||||
``torchvision.transforms.functional.InterpolationMode.BILINEAR``
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, height, width, p=0.5, interpolation=InterpolationMode.BILINEAR
|
||||
):
|
||||
self.height = height
|
||||
self.width = width
|
||||
self.p = p
|
||||
self.interpolation = interpolation
|
||||
|
||||
def __call__(self, img):
|
||||
if random.uniform(0, 1) > self.p:
|
||||
return F.resize(
|
||||
img=img,
|
||||
size=[self.height, self.width],
|
||||
interpolation=self.interpolation
|
||||
)
|
||||
|
||||
new_width = int(round(self.width * 1.125))
|
||||
new_height = int(round(self.height * 1.125))
|
||||
resized_img = F.resize(
|
||||
img=img,
|
||||
size=[new_height, new_width],
|
||||
interpolation=self.interpolation
|
||||
)
|
||||
x_maxrange = new_width - self.width
|
||||
y_maxrange = new_height - self.height
|
||||
x1 = int(round(random.uniform(0, x_maxrange)))
|
||||
y1 = int(round(random.uniform(0, y_maxrange)))
|
||||
croped_img = F.crop(
|
||||
img=resized_img,
|
||||
top=y1,
|
||||
left=x1,
|
||||
height=self.height,
|
||||
width=self.width
|
||||
)
|
||||
|
||||
return croped_img
|
||||
|
||||
|
||||
class InstanceNormalization:
|
||||
"""Normalize data using per-channel mean and standard deviation.
|
||||
|
||||
Reference:
|
||||
- Ulyanov et al. Instance normalization: The missing in- gredient
|
||||
for fast stylization. ArXiv 2016.
|
||||
- Shu et al. A DIRT-T Approach to Unsupervised Domain Adaptation.
|
||||
ICLR 2018.
|
||||
"""
|
||||
|
||||
def __init__(self, eps=1e-8):
|
||||
self.eps = eps
|
||||
|
||||
def __call__(self, img):
|
||||
C, H, W = img.shape
|
||||
img_re = img.reshape(C, H * W)
|
||||
mean = img_re.mean(1).view(C, 1, 1)
|
||||
std = img_re.std(1).view(C, 1, 1)
|
||||
return (img-mean) / (std + self.eps)
|
||||
|
||||
|
||||
class Cutout:
|
||||
"""Randomly mask out one or more patches from an image.
|
||||
|
||||
https://github.com/uoguelph-mlrg/Cutout
|
||||
|
||||
Args:
|
||||
n_holes (int, optional): number of patches to cut out
|
||||
of each image. Default is 1.
|
||||
length (int, optinal): length (in pixels) of each square
|
||||
patch. Default is 16.
|
||||
"""
|
||||
|
||||
def __init__(self, n_holes=1, length=16):
|
||||
self.n_holes = n_holes
|
||||
self.length = length
|
||||
|
||||
def __call__(self, img):
|
||||
"""
|
||||
Args:
|
||||
img (Tensor): tensor image of size (C, H, W).
|
||||
|
||||
Returns:
|
||||
Tensor: image with n_holes of dimension
|
||||
length x length cut out of it.
|
||||
"""
|
||||
h = img.size(1)
|
||||
w = img.size(2)
|
||||
|
||||
mask = np.ones((h, w), np.float32)
|
||||
|
||||
for n in range(self.n_holes):
|
||||
y = np.random.randint(h)
|
||||
x = np.random.randint(w)
|
||||
|
||||
y1 = np.clip(y - self.length // 2, 0, h)
|
||||
y2 = np.clip(y + self.length // 2, 0, h)
|
||||
x1 = np.clip(x - self.length // 2, 0, w)
|
||||
x2 = np.clip(x + self.length // 2, 0, w)
|
||||
|
||||
mask[y1:y2, x1:x2] = 0.0
|
||||
|
||||
mask = torch.from_numpy(mask)
|
||||
mask = mask.expand_as(img)
|
||||
return img * mask
|
||||
|
||||
|
||||
class GaussianNoise:
|
||||
"""Add gaussian noise."""
|
||||
|
||||
def __init__(self, mean=0, std=0.15, p=0.5):
|
||||
self.mean = mean
|
||||
self.std = std
|
||||
self.p = p
|
||||
|
||||
def __call__(self, img):
|
||||
if random.uniform(0, 1) > self.p:
|
||||
return img
|
||||
noise = torch.randn(img.size()) * self.std + self.mean
|
||||
return img + noise
|
||||
|
||||
|
||||
def build_transform(cfg, is_train=True, choices=None):
|
||||
"""Build transformation function.
|
||||
|
||||
Args:
|
||||
cfg (CfgNode): config.
|
||||
is_train (bool, optional): for training (True) or test (False).
|
||||
Default is True.
|
||||
choices (list, optional): list of strings which will overwrite
|
||||
cfg.INPUT.TRANSFORMS if given. Default is None.
|
||||
"""
|
||||
if cfg.INPUT.NO_TRANSFORM:
|
||||
print("Note: no transform is applied!")
|
||||
return None
|
||||
|
||||
if choices is None:
|
||||
choices = cfg.INPUT.TRANSFORMS
|
||||
|
||||
for choice in choices:
|
||||
assert choice in AVAI_CHOICES
|
||||
|
||||
target_size = f"{cfg.INPUT.SIZE[0]}x{cfg.INPUT.SIZE[1]}"
|
||||
|
||||
normalize = Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)
|
||||
|
||||
if is_train:
|
||||
return _build_transform_train(cfg, choices, target_size, normalize)
|
||||
else:
|
||||
return _build_transform_test(cfg, choices, target_size, normalize)
|
||||
|
||||
|
||||
def build_transform_pair(cfg, is_train=True, choices=None):
|
||||
"""Build transformation function.
|
||||
|
||||
Args:
|
||||
cfg (CfgNode): config.
|
||||
is_train (bool, optional): for training (True) or test (False).
|
||||
Default is True.
|
||||
choices (list, optional): list of strings which will overwrite
|
||||
cfg.INPUT.TRANSFORMS if given. Default is None.
|
||||
"""
|
||||
if cfg.INPUT.NO_TRANSFORM:
|
||||
print("Note: no transform is applied!")
|
||||
return None
|
||||
|
||||
if choices is None:
|
||||
choices = cfg.INPUT.TRANSFORMS
|
||||
|
||||
for choice in choices:
|
||||
assert choice in AVAI_CHOICES
|
||||
|
||||
target_size = f"{cfg.INPUT.SIZE[0]}x{cfg.INPUT.SIZE[1]}"
|
||||
|
||||
normalize = Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)
|
||||
|
||||
if is_train:
|
||||
return _build_transform_train_pair(cfg, choices, target_size, normalize)
|
||||
else:
|
||||
return _build_transform_test(cfg, choices, target_size, normalize)
|
||||
|
||||
def _build_transform_train_pair(cfg, choices, target_size, normalize):
|
||||
print("Building transform_train_pair")
|
||||
tfm_train = []
|
||||
|
||||
interp_mode = INTERPOLATION_MODES[cfg.INPUT.INTERPOLATION]
|
||||
input_size = cfg.INPUT.SIZE
|
||||
|
||||
# Make sure the image size matches the target size
|
||||
conditions = []
|
||||
conditions += ["random_crop" not in choices]
|
||||
conditions += ["random_resized_crop" not in choices]
|
||||
if all(conditions):
|
||||
print(f"+ resize to {target_size}")
|
||||
tfm_train += [Resize(input_size, interpolation=interp_mode)]
|
||||
|
||||
# if "random_translation" in choices:
|
||||
# print("+ random translation")
|
||||
# tfm_train += [Random2DTranslation(input_size[0], input_size[1])]
|
||||
#
|
||||
# if "random_crop" in choices:
|
||||
# crop_padding = cfg.INPUT.CROP_PADDING
|
||||
# print(f"+ random crop (padding = {crop_padding})")
|
||||
# tfm_train += [RandomCrop(input_size, padding=crop_padding)]
|
||||
|
||||
if "random_resized_crop" in choices:
|
||||
s_ = cfg.INPUT.RRCROP_SCALE
|
||||
print(f"+ random resized crop pair (size={input_size}, scale={s_})")
|
||||
tfm_train += [
|
||||
RandomResizedCropPair(input_size, scale=s_, interpolation=interp_mode)
|
||||
]
|
||||
|
||||
if "random_flip" in choices:
|
||||
print("+ random flip pair")
|
||||
tfm_train += [RandomHorizontalFlipPair()]
|
||||
|
||||
if "imagenet_policy" in choices:
|
||||
print("+ imagenet policy")
|
||||
tfm_train += [ImageNetPolicy()]
|
||||
|
||||
if "cifar10_policy" in choices:
|
||||
print("+ cifar10 policy")
|
||||
tfm_train += [CIFAR10Policy()]
|
||||
|
||||
if "svhn_policy" in choices:
|
||||
print("+ svhn policy")
|
||||
tfm_train += [SVHNPolicy()]
|
||||
|
||||
if "randaugment" in choices:
|
||||
n_ = cfg.INPUT.RANDAUGMENT_N
|
||||
m_ = cfg.INPUT.RANDAUGMENT_M
|
||||
print(f"+ randaugment (n={n_}, m={m_})")
|
||||
tfm_train += [RandAugment(n_, m_)]
|
||||
|
||||
if "randaugment_fixmatch" in choices:
|
||||
n_ = cfg.INPUT.RANDAUGMENT_N
|
||||
print(f"+ randaugment_fixmatch (n={n_})")
|
||||
tfm_train += [RandAugmentFixMatch(n_)]
|
||||
|
||||
if "randaugment2" in choices:
|
||||
n_ = cfg.INPUT.RANDAUGMENT_N
|
||||
print(f"+ randaugment2 (n={n_})")
|
||||
tfm_train += [RandAugment2(n_)]
|
||||
|
||||
if "colorjitter" in choices:
|
||||
b_ = cfg.INPUT.COLORJITTER_B
|
||||
c_ = cfg.INPUT.COLORJITTER_C
|
||||
s_ = cfg.INPUT.COLORJITTER_S
|
||||
h_ = cfg.INPUT.COLORJITTER_H
|
||||
print(
|
||||
f"+ color jitter (brightness={b_}, "
|
||||
f"contrast={c_}, saturation={s_}, hue={h_})"
|
||||
)
|
||||
tfm_train += [
|
||||
ColorJitter(
|
||||
brightness=b_,
|
||||
contrast=c_,
|
||||
saturation=s_,
|
||||
hue=h_,
|
||||
)
|
||||
]
|
||||
|
||||
if "randomgrayscale" in choices:
|
||||
print("+ random gray scale")
|
||||
tfm_train += [RandomGrayscale(p=cfg.INPUT.RGS_P)]
|
||||
|
||||
if "gaussian_blur" in choices:
|
||||
print(f"+ gaussian blur (kernel={cfg.INPUT.GB_K})")
|
||||
gb_k, gb_p = cfg.INPUT.GB_K, cfg.INPUT.GB_P
|
||||
tfm_train += [RandomApply([GaussianBlur(gb_k)], p=gb_p)]
|
||||
|
||||
print("+ to torch tensor of range [0, 1]")
|
||||
tfm_train += [ToTensor()]
|
||||
|
||||
if "cutout" in choices:
|
||||
cutout_n = cfg.INPUT.CUTOUT_N
|
||||
cutout_len = cfg.INPUT.CUTOUT_LEN
|
||||
print(f"+ cutout (n_holes={cutout_n}, length={cutout_len})")
|
||||
tfm_train += [Cutout(cutout_n, cutout_len)]
|
||||
|
||||
if "normalize" in choices:
|
||||
print(
|
||||
f"+ normalization (mean={cfg.INPUT.PIXEL_MEAN}, std={cfg.INPUT.PIXEL_STD})"
|
||||
)
|
||||
tfm_train += [normalize]
|
||||
|
||||
if "gaussian_noise" in choices:
|
||||
print(
|
||||
f"+ gaussian noise (mean={cfg.INPUT.GN_MEAN}, std={cfg.INPUT.GN_STD})"
|
||||
)
|
||||
tfm_train += [GaussianNoise(cfg.INPUT.GN_MEAN, cfg.INPUT.GN_STD)]
|
||||
|
||||
if "instance_norm" in choices:
|
||||
print("+ instance normalization")
|
||||
tfm_train += [InstanceNormalization()]
|
||||
|
||||
tfm_train = ComposePair(tfm_train)
|
||||
|
||||
|
||||
return tfm_train
|
||||
|
||||
|
||||
def _build_transform_train(cfg, choices, target_size, normalize):
|
||||
print("Building transform_train")
|
||||
tfm_train = []
|
||||
|
||||
interp_mode = INTERPOLATION_MODES[cfg.INPUT.INTERPOLATION]
|
||||
input_size = cfg.INPUT.SIZE
|
||||
|
||||
# Make sure the image size matches the target size
|
||||
conditions = []
|
||||
conditions += ["random_crop" not in choices]
|
||||
conditions += ["random_resized_crop" not in choices]
|
||||
if all(conditions):
|
||||
print(f"+ resize to {target_size}")
|
||||
tfm_train += [Resize(input_size, interpolation=interp_mode)]
|
||||
|
||||
if "random_translation" in choices:
|
||||
print("+ random translation")
|
||||
tfm_train += [Random2DTranslation(input_size[0], input_size[1])]
|
||||
|
||||
if "random_crop" in choices:
|
||||
crop_padding = cfg.INPUT.CROP_PADDING
|
||||
print(f"+ random crop (padding = {crop_padding})")
|
||||
tfm_train += [RandomCrop(input_size, padding=crop_padding)]
|
||||
|
||||
if "random_resized_crop" in choices:
|
||||
s_ = cfg.INPUT.RRCROP_SCALE
|
||||
print(f"+ random resized crop (size={input_size}, scale={s_})")
|
||||
tfm_train += [
|
||||
RandomResizedCrop(input_size, scale=s_, interpolation=interp_mode)
|
||||
]
|
||||
|
||||
if "random_flip" in choices:
|
||||
print("+ random flip")
|
||||
tfm_train += [RandomHorizontalFlip()]
|
||||
|
||||
if "imagenet_policy" in choices:
|
||||
print("+ imagenet policy")
|
||||
tfm_train += [ImageNetPolicy()]
|
||||
|
||||
if "cifar10_policy" in choices:
|
||||
print("+ cifar10 policy")
|
||||
tfm_train += [CIFAR10Policy()]
|
||||
|
||||
if "svhn_policy" in choices:
|
||||
print("+ svhn policy")
|
||||
tfm_train += [SVHNPolicy()]
|
||||
|
||||
if "randaugment" in choices:
|
||||
n_ = cfg.INPUT.RANDAUGMENT_N
|
||||
m_ = cfg.INPUT.RANDAUGMENT_M
|
||||
print(f"+ randaugment (n={n_}, m={m_})")
|
||||
tfm_train += [RandAugment(n_, m_)]
|
||||
|
||||
if "randaugment_fixmatch" in choices:
|
||||
n_ = cfg.INPUT.RANDAUGMENT_N
|
||||
print(f"+ randaugment_fixmatch (n={n_})")
|
||||
tfm_train += [RandAugmentFixMatch(n_)]
|
||||
|
||||
if "randaugment2" in choices:
|
||||
n_ = cfg.INPUT.RANDAUGMENT_N
|
||||
print(f"+ randaugment2 (n={n_})")
|
||||
tfm_train += [RandAugment2(n_)]
|
||||
|
||||
if "colorjitter" in choices:
|
||||
b_ = cfg.INPUT.COLORJITTER_B
|
||||
c_ = cfg.INPUT.COLORJITTER_C
|
||||
s_ = cfg.INPUT.COLORJITTER_S
|
||||
h_ = cfg.INPUT.COLORJITTER_H
|
||||
print(
|
||||
f"+ color jitter (brightness={b_}, "
|
||||
f"contrast={c_}, saturation={s_}, hue={h_})"
|
||||
)
|
||||
tfm_train += [
|
||||
ColorJitter(
|
||||
brightness=b_,
|
||||
contrast=c_,
|
||||
saturation=s_,
|
||||
hue=h_,
|
||||
)
|
||||
]
|
||||
|
||||
if "randomgrayscale" in choices:
|
||||
print("+ random gray scale")
|
||||
tfm_train += [RandomGrayscale(p=cfg.INPUT.RGS_P)]
|
||||
|
||||
if "gaussian_blur" in choices:
|
||||
print(f"+ gaussian blur (kernel={cfg.INPUT.GB_K})")
|
||||
gb_k, gb_p = cfg.INPUT.GB_K, cfg.INPUT.GB_P
|
||||
tfm_train += [RandomApply([GaussianBlur(gb_k)], p=gb_p)]
|
||||
|
||||
print("+ to torch tensor of range [0, 1]")
|
||||
tfm_train += [ToTensor()]
|
||||
|
||||
if "cutout" in choices:
|
||||
cutout_n = cfg.INPUT.CUTOUT_N
|
||||
cutout_len = cfg.INPUT.CUTOUT_LEN
|
||||
print(f"+ cutout (n_holes={cutout_n}, length={cutout_len})")
|
||||
tfm_train += [Cutout(cutout_n, cutout_len)]
|
||||
|
||||
if "normalize" in choices:
|
||||
print(
|
||||
f"+ normalization (mean={cfg.INPUT.PIXEL_MEAN}, std={cfg.INPUT.PIXEL_STD})"
|
||||
)
|
||||
tfm_train += [normalize]
|
||||
|
||||
if "gaussian_noise" in choices:
|
||||
print(
|
||||
f"+ gaussian noise (mean={cfg.INPUT.GN_MEAN}, std={cfg.INPUT.GN_STD})"
|
||||
)
|
||||
tfm_train += [GaussianNoise(cfg.INPUT.GN_MEAN, cfg.INPUT.GN_STD)]
|
||||
|
||||
if "instance_norm" in choices:
|
||||
print("+ instance normalization")
|
||||
tfm_train += [InstanceNormalization()]
|
||||
|
||||
tfm_train = Compose(tfm_train)
|
||||
|
||||
return tfm_train
|
||||
|
||||
|
||||
def _build_transform_test(cfg, choices, target_size, normalize):
|
||||
print("Building transform_test")
|
||||
tfm_test = []
|
||||
|
||||
interp_mode = INTERPOLATION_MODES[cfg.INPUT.INTERPOLATION]
|
||||
input_size = cfg.INPUT.SIZE
|
||||
|
||||
print(f"+ resize the smaller edge to {max(input_size)}")
|
||||
tfm_test += [Resize(max(input_size), interpolation=interp_mode)]
|
||||
|
||||
print(f"+ {target_size} center crop")
|
||||
tfm_test += [CenterCrop(input_size)]
|
||||
|
||||
print("+ to torch tensor of range [0, 1]")
|
||||
tfm_test += [ToTensor()]
|
||||
|
||||
if "normalize" in choices:
|
||||
print(
|
||||
f"+ normalization (mean={cfg.INPUT.PIXEL_MEAN}, std={cfg.INPUT.PIXEL_STD})"
|
||||
)
|
||||
tfm_test += [normalize]
|
||||
|
||||
if "instance_norm" in choices:
|
||||
print("+ instance normalization")
|
||||
tfm_test += [InstanceNormalization()]
|
||||
|
||||
tfm_test = Compose(tfm_test)
|
||||
|
||||
return tfm_test
|
||||
|
||||
89
datasets/oxford_flowers.py
Normal file
89
datasets/oxford_flowers.py
Normal file
@@ -0,0 +1,89 @@
|
||||
import os
|
||||
import pickle
|
||||
import random
|
||||
from scipy.io import loadmat
|
||||
from collections import defaultdict
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import read_json, mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class OxfordFlowers(DatasetBase):
|
||||
|
||||
dataset_dir = "oxford_flowers"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "jpg")
|
||||
self.label_file = os.path.join(self.dataset_dir, "imagelabels.mat")
|
||||
self.lab2cname_file = os.path.join(self.dataset_dir, "cat_to_name.json")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_OxfordFlowers.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
train, val, test = self.read_data()
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def read_data(self):
|
||||
tracker = defaultdict(list)
|
||||
label_file = loadmat(self.label_file)["labels"][0]
|
||||
for i, label in enumerate(label_file):
|
||||
imname = f"image_{str(i + 1).zfill(5)}.jpg"
|
||||
impath = os.path.join(self.image_dir, imname)
|
||||
label = int(label)
|
||||
tracker[label].append(impath)
|
||||
|
||||
print("Splitting data into 50% train, 20% val, and 30% test")
|
||||
|
||||
def _collate(ims, y, c):
|
||||
items = []
|
||||
for im in ims:
|
||||
item = Datum(impath=im, label=y - 1, classname=c) # convert to 0-based label
|
||||
items.append(item)
|
||||
return items
|
||||
|
||||
lab2cname = read_json(self.lab2cname_file)
|
||||
train, val, test = [], [], []
|
||||
for label, impaths in tracker.items():
|
||||
random.shuffle(impaths)
|
||||
n_total = len(impaths)
|
||||
n_train = round(n_total * 0.5)
|
||||
n_val = round(n_total * 0.2)
|
||||
n_test = n_total - n_train - n_val
|
||||
assert n_train > 0 and n_val > 0 and n_test > 0
|
||||
cname = lab2cname[str(label)]
|
||||
train.extend(_collate(impaths[:n_train], label, cname))
|
||||
val.extend(_collate(impaths[n_train : n_train + n_val], label, cname))
|
||||
test.extend(_collate(impaths[n_train + n_val :], label, cname))
|
||||
|
||||
return train, val, test
|
||||
186
datasets/oxford_pets.py
Normal file
186
datasets/oxford_pets.py
Normal file
@@ -0,0 +1,186 @@
|
||||
import os
|
||||
import pickle
|
||||
import math
|
||||
import random
|
||||
from collections import defaultdict
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import read_json, write_json, mkdir_if_missing
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class OxfordPets(DatasetBase):
|
||||
|
||||
dataset_dir = "oxford_pets"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "images")
|
||||
self.anno_dir = os.path.join(self.dataset_dir, "annotations")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_OxfordPets.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = self.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
trainval = self.read_data(split_file="trainval.txt")
|
||||
test = self.read_data(split_file="test.txt")
|
||||
train, val = self.split_trainval(trainval)
|
||||
self.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = self.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def read_data(self, split_file):
|
||||
filepath = os.path.join(self.anno_dir, split_file)
|
||||
items = []
|
||||
|
||||
with open(filepath, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
imname, label, species, _ = line.split(" ")
|
||||
breed = imname.split("_")[:-1]
|
||||
breed = "_".join(breed)
|
||||
breed = breed.lower()
|
||||
imname += ".jpg"
|
||||
impath = os.path.join(self.image_dir, imname)
|
||||
label = int(label) - 1 # convert to 0-based index
|
||||
item = Datum(impath=impath, label=label, classname=breed)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
|
||||
@staticmethod
|
||||
def split_trainval(trainval, p_val=0.2):
|
||||
p_trn = 1 - p_val
|
||||
print(f"Splitting trainval into {p_trn:.0%} train and {p_val:.0%} val")
|
||||
tracker = defaultdict(list)
|
||||
for idx, item in enumerate(trainval):
|
||||
label = item.label
|
||||
tracker[label].append(idx)
|
||||
|
||||
train, val = [], []
|
||||
for label, idxs in tracker.items():
|
||||
n_val = round(len(idxs) * p_val)
|
||||
assert n_val > 0
|
||||
random.shuffle(idxs)
|
||||
for n, idx in enumerate(idxs):
|
||||
item = trainval[idx]
|
||||
if n < n_val:
|
||||
val.append(item)
|
||||
else:
|
||||
train.append(item)
|
||||
|
||||
return train, val
|
||||
|
||||
@staticmethod
|
||||
def save_split(train, val, test, filepath, path_prefix):
|
||||
def _extract(items):
|
||||
out = []
|
||||
for item in items:
|
||||
impath = item.impath
|
||||
label = item.label
|
||||
classname = item.classname
|
||||
impath = impath.replace(path_prefix, "")
|
||||
if impath.startswith("/"):
|
||||
impath = impath[1:]
|
||||
out.append((impath, label, classname))
|
||||
return out
|
||||
|
||||
train = _extract(train)
|
||||
val = _extract(val)
|
||||
test = _extract(test)
|
||||
|
||||
split = {"train": train, "val": val, "test": test}
|
||||
|
||||
write_json(split, filepath)
|
||||
print(f"Saved split to {filepath}")
|
||||
|
||||
@staticmethod
|
||||
def read_split(filepath, path_prefix):
|
||||
def _convert(items):
|
||||
out = []
|
||||
for impath, label, classname in items:
|
||||
impath = os.path.join(path_prefix, impath)
|
||||
item = Datum(impath=impath, label=int(label), classname=classname)
|
||||
out.append(item)
|
||||
return out
|
||||
|
||||
print(f"Reading split from {filepath}")
|
||||
split = read_json(filepath)
|
||||
train = _convert(split["train"])
|
||||
val = _convert(split["val"])
|
||||
test = _convert(split["test"])
|
||||
|
||||
return train, val, test
|
||||
|
||||
@staticmethod
|
||||
def subsample_classes(*args, subsample="all"):
|
||||
"""Divide classes into two groups. The first group
|
||||
represents base classes while the second group represents
|
||||
new classes.
|
||||
|
||||
Args:
|
||||
args: a list of datasets, e.g. train, val and test.
|
||||
subsample (str): what classes to subsample.
|
||||
"""
|
||||
assert subsample in ["all", "base", "new"]
|
||||
|
||||
if subsample == "all":
|
||||
return args
|
||||
|
||||
dataset = args[0]
|
||||
labels = set()
|
||||
for item in dataset:
|
||||
labels.add(item.label)
|
||||
labels = list(labels)
|
||||
labels.sort()
|
||||
n = len(labels)
|
||||
# Divide classes into two halves
|
||||
m = math.ceil(n / 2)
|
||||
|
||||
print(f"SUBSAMPLE {subsample.upper()} CLASSES!")
|
||||
if subsample == "base":
|
||||
selected = labels[:m] # take the first half
|
||||
else:
|
||||
selected = labels[m:] # take the second half
|
||||
relabeler = {y: y_new for y_new, y in enumerate(selected)}
|
||||
|
||||
output = []
|
||||
for dataset in args:
|
||||
dataset_new = []
|
||||
for item in dataset:
|
||||
if item.label not in selected:
|
||||
continue
|
||||
item_new = Datum(
|
||||
impath=item.impath,
|
||||
label=relabeler[item.label],
|
||||
classname=item.classname
|
||||
)
|
||||
dataset_new.append(item_new)
|
||||
output.append(dataset_new)
|
||||
|
||||
return output
|
||||
229
datasets/pascal_voc.py
Normal file
229
datasets/pascal_voc.py
Normal file
@@ -0,0 +1,229 @@
|
||||
import os
|
||||
import pickle
|
||||
from collections import OrderedDict
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import listdir_nohidden, mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
from collections import defaultdict
|
||||
import random
|
||||
import math
|
||||
CAT_LIST = ['aeroplane',
|
||||
'bicycle',
|
||||
'bird',
|
||||
'boat',
|
||||
'bottle',
|
||||
'bus',
|
||||
'car',
|
||||
'cat',
|
||||
'chair',
|
||||
'cow',
|
||||
'table',
|
||||
'dog',
|
||||
'horse',
|
||||
'motorbike',
|
||||
'person',
|
||||
'plant',
|
||||
'sheep',
|
||||
'sofa',
|
||||
'train',
|
||||
'tvmonitor']
|
||||
|
||||
CAT_LIST_TO_NAME = dict(zip(range(len(CAT_LIST)) ,CAT_LIST))
|
||||
|
||||
|
||||
def _collate(ims, y, c):
|
||||
return Datum(impath=ims, label=y, classname=c)
|
||||
|
||||
def load_img_name_list(dataset_path):
|
||||
|
||||
img_gt_name_list = open(dataset_path).readlines()
|
||||
img_name_list = [img_gt_name.strip() for img_gt_name in img_gt_name_list]
|
||||
|
||||
return img_name_list
|
||||
|
||||
def load_image_label_list_from_npy(data_root,img_name_list, label_file_path=None):
|
||||
if label_file_path is None:
|
||||
label_file_path = 'voc12/cls_labels.npy'
|
||||
cls_labels_dict = np.load(label_file_path, allow_pickle=True).item()
|
||||
label_list = []
|
||||
data_dtm = []
|
||||
|
||||
for id in img_name_list:
|
||||
if id not in cls_labels_dict.keys():
|
||||
img_name = id + '.jpg'
|
||||
else:
|
||||
img_name = id
|
||||
label = cls_labels_dict[img_name]
|
||||
label_idx = np.where(label==1)[0]
|
||||
class_name = [CAT_LIST[idx] for idx in range(len(label_idx))]
|
||||
data_dtm.append(_collate(os.path.join(data_root,img_name+'.jpg'),label,class_name))
|
||||
|
||||
return data_dtm
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class VOC12(DatasetBase):
|
||||
dataset_dir = "voc12data"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir,'VOCdevkit/VOC2012/JPEGImages')
|
||||
train_img_name_list_path = os.path.join('voc12/train_aug_id.txt')
|
||||
val_img_name_list_path = os.path.join('voc12/val_id.txt')
|
||||
|
||||
train = load_image_label_list_from_npy(self.image_dir,load_img_name_list(train_img_name_list_path))
|
||||
val = load_image_label_list_from_npy(self.image_dir,load_img_name_list(val_img_name_list_path))
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train = data["train"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
data = {"train": train}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val = self.subsample_classes(train, val, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=val)
|
||||
|
||||
@staticmethod
|
||||
def subsample_classes(*args, subsample="all"):
|
||||
"""Divide classes into two groups. The first group
|
||||
represents base classes while the second group represents
|
||||
new classes.
|
||||
|
||||
Args:
|
||||
args: a list of datasets, e.g. train, val and test.
|
||||
subsample (str): what classes to subsample.
|
||||
"""
|
||||
assert subsample in ["all", "base", "new"]
|
||||
|
||||
if subsample == "all":
|
||||
return args
|
||||
|
||||
dataset = args[0]
|
||||
labels = set()
|
||||
for item in dataset:
|
||||
label_idx = random.choices(np.where(item.label == 1)[0])[0]
|
||||
labels.add(label_idx)
|
||||
labels = list(labels)
|
||||
labels.sort()
|
||||
n = len(labels)
|
||||
# Divide classes into two halves
|
||||
m = math.ceil(n / 2)
|
||||
|
||||
print(f"SUBSAMPLE {subsample.upper()} CLASSES!")
|
||||
if subsample == "base":
|
||||
selected = labels[:m] # take the first half
|
||||
else:
|
||||
selected = labels[m:] # take the second half
|
||||
relabeler = {y: y_new for y_new, y in enumerate(selected)}
|
||||
|
||||
output = []
|
||||
for dataset in args:
|
||||
dataset_new = []
|
||||
for item in dataset:
|
||||
label_idx = random.choices(np.where(item.label == 1)[0])[0]
|
||||
if label_idx not in selected:
|
||||
continue
|
||||
|
||||
item_new = Datum(
|
||||
impath=item.impath,
|
||||
label=item.label,
|
||||
classname=item.classname
|
||||
)
|
||||
dataset_new.append(item_new)
|
||||
output.append(dataset_new)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_num_classes(data_source):
|
||||
"""Count number of classes.
|
||||
|
||||
Args:
|
||||
data_source (list): a list of Datum objects.
|
||||
"""
|
||||
return len(CAT_LIST)
|
||||
|
||||
@staticmethod
|
||||
def get_lab2cname(data_source):
|
||||
"""Get a label-to-classname mapping (dict).
|
||||
|
||||
Args:
|
||||
data_source (list): a list of Datum objects.
|
||||
"""
|
||||
return CAT_LIST_TO_NAME, CAT_LIST
|
||||
|
||||
def split_dataset_by_label(self, data_source):
|
||||
"""Split a dataset, i.e. a list of Datum objects,
|
||||
into class-specific groups stored in a dictionary.
|
||||
|
||||
Args:
|
||||
data_source (list): a list of Datum objects.
|
||||
"""
|
||||
output = defaultdict(list)
|
||||
|
||||
for item in data_source:
|
||||
one_hot_label = item.label
|
||||
label_idx = random.choices(np.where(one_hot_label==1)[0])[0]
|
||||
output[label_idx].append(item)
|
||||
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def read_classnames(text_file):
|
||||
"""Return a dictionary containing
|
||||
key-value pairs of <folder name>: <class name>.
|
||||
"""
|
||||
classnames = OrderedDict()
|
||||
with open(text_file, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
line = line.strip().split(" ")
|
||||
folder = line[0]
|
||||
classname = " ".join(line[1:])
|
||||
classnames[folder] = classname
|
||||
return classnames
|
||||
|
||||
def read_data(self, classnames, split_dir):
|
||||
split_dir = os.path.join(self.image_dir, split_dir)
|
||||
folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir())
|
||||
items = []
|
||||
|
||||
for label, folder in enumerate(folders):
|
||||
imnames = listdir_nohidden(os.path.join(split_dir, folder))
|
||||
classname = classnames[folder]
|
||||
for imname in imnames:
|
||||
impath = os.path.join(split_dir, folder, imname)
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
|
||||
|
||||
75
datasets/stanford_cars.py
Normal file
75
datasets/stanford_cars.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import os
|
||||
import pickle
|
||||
from scipy.io import loadmat
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
import numpy as np
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class StanfordCars(DatasetBase):
|
||||
|
||||
dataset_dir = "stanford_cars"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_StanfordCars.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.dataset_dir)
|
||||
else:
|
||||
trainval_file = os.path.join(self.dataset_dir, "devkit", "cars_train_annos.mat")
|
||||
test_file = os.path.join(self.dataset_dir, "cars_test_annos_withlabels.mat")
|
||||
meta_file = os.path.join(self.dataset_dir, "devkit", "cars_meta.mat")
|
||||
trainval = self.read_data("cars_train", trainval_file, meta_file)
|
||||
test = self.read_data("cars_test", test_file, meta_file)
|
||||
train, val = OxfordPets.split_trainval(trainval)
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.dataset_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def read_data(self, image_dir, anno_file, meta_file):
|
||||
anno_file = loadmat(anno_file)["annotations"][0]
|
||||
meta_file = loadmat(meta_file)["class_names"][0]
|
||||
items = []
|
||||
|
||||
for i in range(len(anno_file)):
|
||||
imname = anno_file[i]["fname"][0]
|
||||
impath = os.path.join(self.dataset_dir, image_dir, imname)
|
||||
label = anno_file[i]["class"][0, 0]
|
||||
label = int(label) - 1 # convert to 0-based index
|
||||
classname = meta_file[label][0]
|
||||
names = classname.split(" ")
|
||||
year = names.pop(-1)
|
||||
names.insert(0, year)
|
||||
classname = " ".join(names)
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
81
datasets/sun397.py
Normal file
81
datasets/sun397.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class SUN397(DatasetBase):
|
||||
|
||||
dataset_dir = "sun397"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "SUN397")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_SUN397.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
classnames = []
|
||||
with open(os.path.join(self.dataset_dir, "ClassName.txt"), "r") as f:
|
||||
lines = f.readlines()
|
||||
|
||||
for line in lines:
|
||||
line = line.strip()[1:] # remove /
|
||||
classnames.append(line)
|
||||
cname2lab = {c: i for i, c in enumerate(classnames)}
|
||||
trainval = self.read_data(cname2lab, "Training_01.txt")
|
||||
test = self.read_data(cname2lab, "Testing_01.txt")
|
||||
train, val = OxfordPets.split_trainval(trainval)
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def read_data(self, cname2lab, text_file):
|
||||
text_file = os.path.join(self.dataset_dir, text_file)
|
||||
items = []
|
||||
|
||||
with open(text_file, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
imname = line.strip()[1:] # remove /
|
||||
classname = os.path.dirname(imname)
|
||||
label = cname2lab[classname]
|
||||
impath = os.path.join(self.image_dir, imname)
|
||||
|
||||
names = classname.split("/")[1:] # remove 1st letter
|
||||
names = names[::-1] # put words like indoor/outdoor at first
|
||||
classname = " ".join(names)
|
||||
|
||||
item = Datum(impath=impath, label=label, classname=classname)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
84
datasets/ucf101.py
Normal file
84
datasets/ucf101.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import os
|
||||
import pickle
|
||||
import re
|
||||
|
||||
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
||||
from dassl.utils import mkdir_if_missing
|
||||
|
||||
from .oxford_pets import OxfordPets
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class UCF101(DatasetBase):
|
||||
|
||||
dataset_dir = "ucf101"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
||||
self.image_dir = os.path.join(self.dataset_dir, "UCF-101-midframes")
|
||||
self.split_path = os.path.join(self.dataset_dir, "split_zhou_UCF101.json")
|
||||
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
||||
mkdir_if_missing(self.split_fewshot_dir)
|
||||
|
||||
if os.path.exists(self.split_path):
|
||||
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
|
||||
else:
|
||||
cname2lab = {}
|
||||
filepath = os.path.join(self.dataset_dir, "ucfTrainTestlist/classInd.txt")
|
||||
with open(filepath, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
label, classname = line.strip().split(" ")
|
||||
label = int(label) - 1 # conver to 0-based index
|
||||
cname2lab[classname] = label
|
||||
|
||||
trainval = self.read_data(cname2lab, "ucfTrainTestlist/trainlist01.txt")
|
||||
test = self.read_data(cname2lab, "ucfTrainTestlist/testlist01.txt")
|
||||
train, val = OxfordPets.split_trainval(trainval)
|
||||
OxfordPets.save_split(train, val, test, self.split_path, self.image_dir)
|
||||
|
||||
num_shots = cfg.DATASET.NUM_SHOTS
|
||||
if num_shots >= 1:
|
||||
seed = cfg.SEED
|
||||
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
||||
|
||||
if os.path.exists(preprocessed):
|
||||
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
||||
with open(preprocessed, "rb") as file:
|
||||
data = pickle.load(file)
|
||||
train, val = data["train"], data["val"]
|
||||
else:
|
||||
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
||||
val = self.generate_fewshot_dataset(val, num_shots=min(num_shots, 4))
|
||||
data = {"train": train, "val": val}
|
||||
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
||||
with open(preprocessed, "wb") as file:
|
||||
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
||||
train, val, test = OxfordPets.subsample_classes(train, val, test, subsample=subsample)
|
||||
|
||||
super().__init__(train_x=train, val=val, test=test)
|
||||
|
||||
def read_data(self, cname2lab, text_file):
|
||||
text_file = os.path.join(self.dataset_dir, text_file)
|
||||
items = []
|
||||
|
||||
with open(text_file, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
line = line.strip().split(" ")[0] # trainlist: filename, label
|
||||
action, filename = line.split("/")
|
||||
label = cname2lab[action]
|
||||
|
||||
elements = re.findall("[A-Z][^A-Z]*", action)
|
||||
renamed_action = "_".join(elements)
|
||||
|
||||
filename = filename.replace(".avi", ".jpg")
|
||||
impath = os.path.join(self.image_dir, renamed_action, filename)
|
||||
|
||||
item = Datum(impath=impath, label=label, classname=renamed_action)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
Reference in New Issue
Block a user