Upload to Main
This commit is contained in:
0
trainers/__init__.py
Normal file
0
trainers/__init__.py
Normal file
BIN
trainers/__pycache__/__init__.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/__init__.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/cocoop.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/cocoop.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/coop.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/coop.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/imagenet_templates.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/imagenet_templates.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/independentVL.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/independentVL.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/maple.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/maple.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/util.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/util.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/vpt.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/vpt.cpython-39.pyc
Normal file
Binary file not shown.
BIN
trainers/__pycache__/zsclip.cpython-39.pyc
Normal file
BIN
trainers/__pycache__/zsclip.cpython-39.pyc
Normal file
Binary file not shown.
318
trainers/cocoop.py
Normal file
318
trainers/cocoop.py
Normal file
@@ -0,0 +1,318 @@
|
||||
import os.path as osp
|
||||
from collections import OrderedDict
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
|
||||
from dassl.engine import TRAINER_REGISTRY, TrainerX
|
||||
from dassl.metrics import compute_accuracy
|
||||
from dassl.utils import load_pretrained_weights, load_checkpoint
|
||||
from dassl.optim import build_optimizer, build_lr_scheduler
|
||||
|
||||
from clip import clip
|
||||
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
|
||||
def load_clip_to_cpu(cfg):
|
||||
backbone_name = cfg.MODEL.BACKBONE.NAME
|
||||
url = clip._MODELS[backbone_name]
|
||||
model_path = clip._download(url)
|
||||
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(model_path, map_location="cpu").eval()
|
||||
state_dict = None
|
||||
|
||||
except RuntimeError:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
design_details = {"trainer": 'CoCoOp',
|
||||
"vision_depth": 0,
|
||||
"language_depth": 0, "vision_ctx": 0,
|
||||
"language_ctx": 0}
|
||||
model = clip.build_model(state_dict or model.state_dict(), design_details)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, clip_model):
|
||||
super().__init__()
|
||||
self.transformer = clip_model.transformer
|
||||
self.positional_embedding = clip_model.positional_embedding
|
||||
self.ln_final = clip_model.ln_final
|
||||
self.text_projection = clip_model.text_projection
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, prompts, tokenized_prompts):
|
||||
x = prompts + self.positional_embedding.type(self.dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x).type(self.dtype)
|
||||
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class PromptLearner(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
n_cls = len(classnames)
|
||||
n_ctx = cfg.TRAINER.COCOOP.N_CTX
|
||||
ctx_init = cfg.TRAINER.COCOOP.CTX_INIT
|
||||
dtype = clip_model.dtype
|
||||
ctx_dim = clip_model.ln_final.weight.shape[0]
|
||||
vis_dim = clip_model.visual.output_dim
|
||||
clip_imsize = clip_model.visual.input_resolution
|
||||
cfg_imsize = cfg.INPUT.SIZE[0]
|
||||
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
|
||||
|
||||
if ctx_init:
|
||||
# use given words to initialize context vectors
|
||||
ctx_init = ctx_init.replace("_", " ")
|
||||
n_ctx = len(ctx_init.split(" "))
|
||||
prompt = clip.tokenize(ctx_init)
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(prompt).type(dtype)
|
||||
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
|
||||
prompt_prefix = ctx_init
|
||||
else:
|
||||
# random initialization
|
||||
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
|
||||
nn.init.normal_(ctx_vectors, std=0.02)
|
||||
prompt_prefix = " ".join(["X"] * n_ctx)
|
||||
|
||||
print(f'Initial context: "{prompt_prefix}"')
|
||||
print(f"Number of context words (tokens): {n_ctx}")
|
||||
|
||||
self.ctx = nn.Parameter(ctx_vectors)
|
||||
|
||||
self.meta_net = nn.Sequential(OrderedDict([
|
||||
("linear1", nn.Linear(vis_dim, vis_dim // 16)),
|
||||
("relu", nn.ReLU(inplace=True)),
|
||||
("linear2", nn.Linear(vis_dim // 16, ctx_dim))
|
||||
]))
|
||||
|
||||
if cfg.TRAINER.COCOOP.PREC == "fp16":
|
||||
self.meta_net.half()
|
||||
|
||||
classnames = [name.replace("_", " ") for name in classnames]
|
||||
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
||||
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
||||
|
||||
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
|
||||
|
||||
# These token vectors will be saved when in save_model(),
|
||||
# but they should be ignored in load_model() as we want to use
|
||||
# those computed using the current class names
|
||||
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
|
||||
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
|
||||
|
||||
self.n_cls = n_cls
|
||||
self.n_ctx = n_ctx
|
||||
self.tokenized_prompts = tokenized_prompts # torch.Tensor
|
||||
self.name_lens = name_lens
|
||||
|
||||
def construct_prompts(self, ctx, prefix, suffix, label=None):
|
||||
# dim0 is either batch_size (during training) or n_cls (during testing)
|
||||
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
|
||||
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
|
||||
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
|
||||
|
||||
if label is not None:
|
||||
prefix = prefix[label]
|
||||
suffix = suffix[label]
|
||||
|
||||
prompts = torch.cat(
|
||||
[
|
||||
prefix, # (dim0, 1, dim)
|
||||
ctx, # (dim0, n_ctx, dim)
|
||||
suffix, # (dim0, *, dim)
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
return prompts
|
||||
|
||||
def forward(self, im_features):
|
||||
prefix = self.token_prefix
|
||||
suffix = self.token_suffix
|
||||
ctx = self.ctx # (n_ctx, ctx_dim)
|
||||
bias = self.meta_net(im_features) # (batch, ctx_dim)
|
||||
bias = bias.unsqueeze(1) # (batch, 1, ctx_dim)
|
||||
ctx = ctx.unsqueeze(0) # (1, n_ctx, ctx_dim)
|
||||
ctx_shifted = ctx + bias # (batch, n_ctx, ctx_dim)
|
||||
|
||||
# Use instance-conditioned context tokens for all classes
|
||||
prompts = []
|
||||
for ctx_shifted_i in ctx_shifted:
|
||||
ctx_i = ctx_shifted_i.unsqueeze(0).expand(self.n_cls, -1, -1)
|
||||
pts_i = self.construct_prompts(ctx_i, prefix, suffix) # (n_cls, n_tkn, ctx_dim)
|
||||
prompts.append(pts_i)
|
||||
prompts = torch.stack(prompts)
|
||||
|
||||
return prompts
|
||||
|
||||
|
||||
class CustomCLIP(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
self.prompt_learner = PromptLearner(cfg, classnames, clip_model)
|
||||
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
|
||||
self.image_encoder = clip_model.visual
|
||||
self.text_encoder = TextEncoder(clip_model)
|
||||
self.logit_scale = clip_model.logit_scale
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, image, label=None):
|
||||
tokenized_prompts = self.tokenized_prompts
|
||||
logit_scale = self.logit_scale.exp()
|
||||
|
||||
image_features = self.image_encoder(image.type(self.dtype))
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
prompts = self.prompt_learner(image_features)
|
||||
|
||||
logits = []
|
||||
for pts_i, imf_i in zip(prompts, image_features):
|
||||
text_features = self.text_encoder(pts_i, tokenized_prompts)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
l_i = logit_scale * imf_i @ text_features.t()
|
||||
logits.append(l_i)
|
||||
logits = torch.stack(logits)
|
||||
|
||||
if self.prompt_learner.training:
|
||||
return F.cross_entropy(logits, label)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class CoCoOp(TrainerX):
|
||||
def check_cfg(self, cfg):
|
||||
assert cfg.TRAINER.COCOOP.PREC in ["fp16", "fp32", "amp"]
|
||||
|
||||
def build_model(self):
|
||||
cfg = self.cfg
|
||||
classnames = self.dm.dataset.classnames
|
||||
|
||||
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
|
||||
clip_model = load_clip_to_cpu(cfg)
|
||||
|
||||
if cfg.TRAINER.COCOOP.PREC == "fp32" or cfg.TRAINER.COCOOP.PREC == "amp":
|
||||
# CLIP's default precision is fp16
|
||||
clip_model.float()
|
||||
|
||||
print("Building custom CLIP")
|
||||
self.model = CustomCLIP(cfg, classnames, clip_model)
|
||||
|
||||
print("Turning off gradients in both the image and the text encoder")
|
||||
name_to_update = "prompt_learner"
|
||||
|
||||
for name, param in self.model.named_parameters():
|
||||
if name_to_update not in name:
|
||||
param.requires_grad_(False)
|
||||
|
||||
# Double check
|
||||
enabled = set()
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad:
|
||||
enabled.add(name)
|
||||
print(f"Parameters to be updated: {enabled}")
|
||||
|
||||
if cfg.MODEL.INIT_WEIGHTS:
|
||||
load_pretrained_weights(self.model.prompt_learner, cfg.MODEL.INIT_WEIGHTS)
|
||||
|
||||
self.model.to(self.device)
|
||||
# NOTE: only give prompt_learner to the optimizer
|
||||
self.optim = build_optimizer(self.model.prompt_learner, cfg.OPTIM)
|
||||
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
|
||||
self.register_model("prompt_learner", self.model.prompt_learner, self.optim, self.sched)
|
||||
|
||||
self.scaler = GradScaler() if cfg.TRAINER.COCOOP.PREC == "amp" else None
|
||||
|
||||
# Note that multi-gpu training could be slow because CLIP's size is
|
||||
# big, which slows down the copy operation in DataParallel
|
||||
device_count = torch.cuda.device_count()
|
||||
if device_count > 1:
|
||||
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
|
||||
self.model = nn.DataParallel(self.model)
|
||||
|
||||
def forward_backward(self, batch):
|
||||
image, label = self.parse_batch_train(batch)
|
||||
|
||||
model = self.model
|
||||
optim = self.optim
|
||||
scaler = self.scaler
|
||||
|
||||
prec = self.cfg.TRAINER.COCOOP.PREC
|
||||
if prec == "amp":
|
||||
with autocast():
|
||||
loss = model(image, label)
|
||||
optim.zero_grad()
|
||||
scaler.scale(loss).backward()
|
||||
scaler.step(optim)
|
||||
scaler.update()
|
||||
else:
|
||||
loss = model(image, label)
|
||||
optim.zero_grad()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
loss_summary = {"loss": loss.item()}
|
||||
|
||||
if (self.batch_idx + 1) == self.num_batches:
|
||||
self.update_lr()
|
||||
|
||||
return loss_summary
|
||||
|
||||
def parse_batch_train(self, batch):
|
||||
input = batch["img"]
|
||||
label = batch["label"]
|
||||
input = input.to(self.device)
|
||||
label = label.to(self.device)
|
||||
return input, label
|
||||
|
||||
def load_model(self, directory, epoch=None):
|
||||
if not directory:
|
||||
print("Note that load_model() is skipped as no pretrained model is given")
|
||||
return
|
||||
|
||||
names = self.get_model_names()
|
||||
|
||||
# By default, the best model is loaded
|
||||
model_file = "model-best.pth.tar"
|
||||
|
||||
if epoch is not None:
|
||||
model_file = "model.pth.tar-" + str(epoch)
|
||||
|
||||
for name in names:
|
||||
model_path = osp.join(directory, name, model_file)
|
||||
|
||||
if not osp.exists(model_path):
|
||||
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
|
||||
|
||||
checkpoint = load_checkpoint(model_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
epoch = checkpoint["epoch"]
|
||||
|
||||
# Ignore fixed token vectors
|
||||
if "token_prefix" in state_dict:
|
||||
del state_dict["token_prefix"]
|
||||
|
||||
if "token_suffix" in state_dict:
|
||||
del state_dict["token_suffix"]
|
||||
|
||||
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
|
||||
# set strict=False
|
||||
self._models[name].load_state_dict(state_dict, strict=False)
|
||||
328
trainers/coop.py
Normal file
328
trainers/coop.py
Normal file
@@ -0,0 +1,328 @@
|
||||
import os.path as osp
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
|
||||
from dassl.engine import TRAINER_REGISTRY, TrainerX
|
||||
from dassl.metrics import compute_accuracy
|
||||
from dassl.utils import load_pretrained_weights, load_checkpoint
|
||||
from dassl.optim import build_optimizer, build_lr_scheduler
|
||||
|
||||
from clip import clip
|
||||
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
|
||||
def load_clip_to_cpu(cfg):
|
||||
backbone_name = cfg.MODEL.BACKBONE.NAME
|
||||
url = clip._MODELS[backbone_name]
|
||||
model_path = clip._download(url)
|
||||
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(model_path, map_location="cpu").eval()
|
||||
state_dict = None
|
||||
|
||||
except RuntimeError:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
design_details = {"trainer": 'CoOp',
|
||||
"vision_depth": 0,
|
||||
"language_depth": 0, "vision_ctx": 0,
|
||||
"language_ctx": 0}
|
||||
model = clip.build_model(state_dict or model.state_dict(), design_details)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, clip_model):
|
||||
super().__init__()
|
||||
self.transformer = clip_model.transformer
|
||||
self.positional_embedding = clip_model.positional_embedding
|
||||
self.ln_final = clip_model.ln_final
|
||||
self.text_projection = clip_model.text_projection
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, prompts, tokenized_prompts):
|
||||
x = prompts + self.positional_embedding.type(self.dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x).type(self.dtype)
|
||||
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class PromptLearner(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
n_cls = len(classnames)
|
||||
n_ctx = cfg.TRAINER.COOP.N_CTX
|
||||
ctx_init = cfg.TRAINER.COOP.CTX_INIT
|
||||
dtype = clip_model.dtype
|
||||
ctx_dim = clip_model.ln_final.weight.shape[0]
|
||||
clip_imsize = clip_model.visual.input_resolution
|
||||
cfg_imsize = cfg.INPUT.SIZE[0]
|
||||
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
|
||||
|
||||
if ctx_init:
|
||||
# use given words to initialize context vectors
|
||||
ctx_init = ctx_init.replace("_", " ")
|
||||
n_ctx = len(ctx_init.split(" "))
|
||||
prompt = clip.tokenize(ctx_init)
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(prompt).type(dtype)
|
||||
ctx_vectors = embedding[0, 1 : 1 + n_ctx, :]
|
||||
prompt_prefix = ctx_init
|
||||
|
||||
else:
|
||||
# random initialization
|
||||
if cfg.TRAINER.COOP.CSC:
|
||||
print("Initializing class-specific contexts")
|
||||
ctx_vectors = torch.empty(n_cls, n_ctx, ctx_dim, dtype=dtype)
|
||||
else:
|
||||
print("Initializing a generic context")
|
||||
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
|
||||
nn.init.normal_(ctx_vectors, std=0.02)
|
||||
prompt_prefix = " ".join(["X"] * n_ctx)
|
||||
|
||||
print(f'Initial context: "{prompt_prefix}"')
|
||||
print(f"Number of context words (tokens): {n_ctx}")
|
||||
|
||||
self.ctx = nn.Parameter(ctx_vectors) # to be optimized
|
||||
|
||||
classnames = [name.replace("_", " ") for name in classnames]
|
||||
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
||||
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
||||
|
||||
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts])
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
|
||||
|
||||
# These token vectors will be saved when in save_model(),
|
||||
# but they should be ignored in load_model() as we want to use
|
||||
# those computed using the current class names
|
||||
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
|
||||
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx :, :]) # CLS, EOS
|
||||
|
||||
self.n_cls = n_cls
|
||||
self.n_ctx = n_ctx
|
||||
self.tokenized_prompts = tokenized_prompts # torch.Tensor
|
||||
self.name_lens = name_lens
|
||||
self.class_token_position = cfg.TRAINER.COOP.CLASS_TOKEN_POSITION
|
||||
|
||||
def forward(self):
|
||||
ctx = self.ctx
|
||||
if ctx.dim() == 2:
|
||||
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
|
||||
|
||||
prefix = self.token_prefix
|
||||
suffix = self.token_suffix
|
||||
|
||||
if self.class_token_position == "end":
|
||||
prompts = torch.cat(
|
||||
[
|
||||
prefix, # (n_cls, 1, dim)
|
||||
ctx, # (n_cls, n_ctx, dim)
|
||||
suffix, # (n_cls, *, dim)
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
elif self.class_token_position == "middle":
|
||||
half_n_ctx = self.n_ctx // 2
|
||||
prompts = []
|
||||
for i in range(self.n_cls):
|
||||
name_len = self.name_lens[i]
|
||||
prefix_i = prefix[i : i + 1, :, :]
|
||||
class_i = suffix[i : i + 1, :name_len, :]
|
||||
suffix_i = suffix[i : i + 1, name_len:, :]
|
||||
ctx_i_half1 = ctx[i : i + 1, :half_n_ctx, :]
|
||||
ctx_i_half2 = ctx[i : i + 1, half_n_ctx:, :]
|
||||
prompt = torch.cat(
|
||||
[
|
||||
prefix_i, # (1, 1, dim)
|
||||
ctx_i_half1, # (1, n_ctx//2, dim)
|
||||
class_i, # (1, name_len, dim)
|
||||
ctx_i_half2, # (1, n_ctx//2, dim)
|
||||
suffix_i, # (1, *, dim)
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
prompts.append(prompt)
|
||||
prompts = torch.cat(prompts, dim=0)
|
||||
|
||||
elif self.class_token_position == "front":
|
||||
prompts = []
|
||||
for i in range(self.n_cls):
|
||||
name_len = self.name_lens[i]
|
||||
prefix_i = prefix[i : i + 1, :, :]
|
||||
class_i = suffix[i : i + 1, :name_len, :]
|
||||
suffix_i = suffix[i : i + 1, name_len:, :]
|
||||
ctx_i = ctx[i : i + 1, :, :]
|
||||
prompt = torch.cat(
|
||||
[
|
||||
prefix_i, # (1, 1, dim)
|
||||
class_i, # (1, name_len, dim)
|
||||
ctx_i, # (1, n_ctx, dim)
|
||||
suffix_i, # (1, *, dim)
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
prompts.append(prompt)
|
||||
prompts = torch.cat(prompts, dim=0)
|
||||
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
return prompts
|
||||
|
||||
|
||||
class CustomCLIP(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
self.prompt_learner = PromptLearner(cfg, classnames, clip_model)
|
||||
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
|
||||
self.image_encoder = clip_model.visual
|
||||
self.text_encoder = TextEncoder(clip_model)
|
||||
self.logit_scale = clip_model.logit_scale
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, image):
|
||||
image_features = self.image_encoder(image.type(self.dtype))
|
||||
|
||||
prompts = self.prompt_learner()
|
||||
tokenized_prompts = self.tokenized_prompts
|
||||
text_features = self.text_encoder(prompts, tokenized_prompts)
|
||||
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
logit_scale = self.logit_scale.exp()
|
||||
logits = logit_scale * image_features @ text_features.t()
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class CoOp(TrainerX):
|
||||
"""Context Optimization (CoOp).
|
||||
|
||||
Learning to Prompt for Vision-Language Models
|
||||
https://arxiv.org/abs/2109.01134
|
||||
"""
|
||||
|
||||
def check_cfg(self, cfg):
|
||||
assert cfg.TRAINER.COOP.PREC in ["fp16", "fp32", "amp"]
|
||||
|
||||
def build_model(self):
|
||||
cfg = self.cfg
|
||||
classnames = self.dm.dataset.classnames
|
||||
|
||||
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
|
||||
clip_model = load_clip_to_cpu(cfg)
|
||||
|
||||
if cfg.TRAINER.COOP.PREC == "fp32" or cfg.TRAINER.COOP.PREC == "amp":
|
||||
# CLIP's default precision is fp16
|
||||
clip_model.float()
|
||||
|
||||
print("Building custom CLIP")
|
||||
self.model = CustomCLIP(cfg, classnames, clip_model)
|
||||
|
||||
print("Turning off gradients in both the image and the text encoder")
|
||||
for name, param in self.model.named_parameters():
|
||||
if "prompt_learner" not in name:
|
||||
param.requires_grad_(False)
|
||||
|
||||
if cfg.MODEL.INIT_WEIGHTS:
|
||||
load_pretrained_weights(self.model.prompt_learner, cfg.MODEL.INIT_WEIGHTS)
|
||||
|
||||
self.model.to(self.device)
|
||||
# NOTE: only give prompt_learner to the optimizer
|
||||
self.optim = build_optimizer(self.model.prompt_learner, cfg.OPTIM)
|
||||
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
|
||||
self.register_model("prompt_learner", self.model.prompt_learner, self.optim, self.sched)
|
||||
|
||||
self.scaler = GradScaler() if cfg.TRAINER.COOP.PREC == "amp" else None
|
||||
|
||||
# Note that multi-gpu training could be slow because CLIP's size is
|
||||
# big, which slows down the copy operation in DataParallel
|
||||
device_count = torch.cuda.device_count()
|
||||
if device_count > 1:
|
||||
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
|
||||
self.model = nn.DataParallel(self.model)
|
||||
|
||||
def forward_backward(self, batch):
|
||||
image, label = self.parse_batch_train(batch)
|
||||
|
||||
prec = self.cfg.TRAINER.COOP.PREC
|
||||
if prec == "amp":
|
||||
with autocast():
|
||||
output = self.model(image)
|
||||
loss = F.cross_entropy(output, label)
|
||||
self.optim.zero_grad()
|
||||
self.scaler.scale(loss).backward()
|
||||
self.scaler.step(self.optim)
|
||||
self.scaler.update()
|
||||
else:
|
||||
output = self.model(image)
|
||||
loss = F.cross_entropy(output, label)
|
||||
self.model_backward_and_update(loss)
|
||||
|
||||
loss_summary = {
|
||||
"loss": loss.item(),
|
||||
"acc": compute_accuracy(output, label)[0].item(),
|
||||
}
|
||||
|
||||
if (self.batch_idx + 1) == self.num_batches:
|
||||
self.update_lr()
|
||||
|
||||
return loss_summary
|
||||
|
||||
def parse_batch_train(self, batch):
|
||||
input = batch["img"]
|
||||
label = batch["label"]
|
||||
input = input.to(self.device)
|
||||
label = label.to(self.device)
|
||||
return input, label
|
||||
|
||||
def load_model(self, directory, epoch=None):
|
||||
if not directory:
|
||||
print("Note that load_model() is skipped as no pretrained model is given")
|
||||
return
|
||||
|
||||
names = self.get_model_names()
|
||||
|
||||
# By default, the best model is loaded
|
||||
model_file = "model-best.pth.tar"
|
||||
|
||||
if epoch is not None:
|
||||
model_file = "model.pth.tar-" + str(epoch)
|
||||
|
||||
for name in names:
|
||||
model_path = osp.join(directory, name, model_file)
|
||||
|
||||
if not osp.exists(model_path):
|
||||
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
|
||||
|
||||
checkpoint = load_checkpoint(model_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
epoch = checkpoint["epoch"]
|
||||
|
||||
# Ignore fixed token vectors
|
||||
if "token_prefix" in state_dict:
|
||||
del state_dict["token_prefix"]
|
||||
|
||||
if "token_suffix" in state_dict:
|
||||
del state_dict["token_suffix"]
|
||||
|
||||
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
|
||||
# set strict=False
|
||||
self._models[name].load_state_dict(state_dict, strict=False)
|
||||
94
trainers/imagenet_templates.py
Normal file
94
trainers/imagenet_templates.py
Normal file
@@ -0,0 +1,94 @@
|
||||
# source: https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
|
||||
|
||||
IMAGENET_TEMPLATES = [
|
||||
"a bad photo of a {}.",
|
||||
"a photo of many {}.",
|
||||
"a sculpture of a {}.",
|
||||
"a photo of the hard to see {}.",
|
||||
"a low resolution photo of the {}.",
|
||||
"a rendering of a {}.",
|
||||
"graffiti of a {}.",
|
||||
"a bad photo of the {}.",
|
||||
"a cropped photo of the {}.",
|
||||
"a tattoo of a {}.",
|
||||
"the embroidered {}.",
|
||||
"a photo of a hard to see {}.",
|
||||
"a bright photo of a {}.",
|
||||
"a photo of a clean {}.",
|
||||
"a photo of a dirty {}.",
|
||||
"a dark photo of the {}.",
|
||||
"a drawing of a {}.",
|
||||
"a photo of my {}.",
|
||||
"the plastic {}.",
|
||||
"a photo of the cool {}.",
|
||||
"a close-up photo of a {}.",
|
||||
"a black and white photo of the {}.",
|
||||
"a painting of the {}.",
|
||||
"a painting of a {}.",
|
||||
"a pixelated photo of the {}.",
|
||||
"a sculpture of the {}.",
|
||||
"a bright photo of the {}.",
|
||||
"a cropped photo of a {}.",
|
||||
"a plastic {}.",
|
||||
"a photo of the dirty {}.",
|
||||
"a jpeg corrupted photo of a {}.",
|
||||
"a blurry photo of the {}.",
|
||||
"a photo of the {}.",
|
||||
"a good photo of the {}.",
|
||||
"a rendering of the {}.",
|
||||
"a {} in a video game.",
|
||||
"a photo of one {}.",
|
||||
"a doodle of a {}.",
|
||||
"a close-up photo of the {}.",
|
||||
"a photo of a {}.",
|
||||
"the origami {}.",
|
||||
"the {} in a video game.",
|
||||
"a sketch of a {}.",
|
||||
"a doodle of the {}.",
|
||||
"a origami {}.",
|
||||
"a low resolution photo of a {}.",
|
||||
"the toy {}.",
|
||||
"a rendition of the {}.",
|
||||
"a photo of the clean {}.",
|
||||
"a photo of a large {}.",
|
||||
"a rendition of a {}.",
|
||||
"a photo of a nice {}.",
|
||||
"a photo of a weird {}.",
|
||||
"a blurry photo of a {}.",
|
||||
"a cartoon {}.",
|
||||
"art of a {}.",
|
||||
"a sketch of the {}.",
|
||||
"a embroidered {}.",
|
||||
"a pixelated photo of a {}.",
|
||||
"itap of the {}.",
|
||||
"a jpeg corrupted photo of the {}.",
|
||||
"a good photo of a {}.",
|
||||
"a plushie {}.",
|
||||
"a photo of the nice {}.",
|
||||
"a photo of the small {}.",
|
||||
"a photo of the weird {}.",
|
||||
"the cartoon {}.",
|
||||
"art of the {}.",
|
||||
"a drawing of the {}.",
|
||||
"a photo of the large {}.",
|
||||
"a black and white photo of a {}.",
|
||||
"the plushie {}.",
|
||||
"a dark photo of a {}.",
|
||||
"itap of a {}.",
|
||||
"graffiti of the {}.",
|
||||
"a toy {}.",
|
||||
"itap of my {}.",
|
||||
"a photo of a cool {}.",
|
||||
"a photo of a small {}.",
|
||||
"a tattoo of the {}.",
|
||||
]
|
||||
|
||||
IMAGENET_TEMPLATES_SELECT = [
|
||||
"itap of a {}.",
|
||||
"a bad photo of the {}.",
|
||||
"a origami {}.",
|
||||
"a photo of the large {}.",
|
||||
"a {} in a video game.",
|
||||
"art of the {}.",
|
||||
"a photo of the small {}.",
|
||||
]
|
||||
304
trainers/independentVL.py
Normal file
304
trainers/independentVL.py
Normal file
@@ -0,0 +1,304 @@
|
||||
import os.path as osp
|
||||
from collections import OrderedDict
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
|
||||
from dassl.engine import TRAINER_REGISTRY, TrainerX
|
||||
from dassl.metrics import compute_accuracy
|
||||
from dassl.utils import load_pretrained_weights, load_checkpoint
|
||||
from dassl.optim import build_optimizer, build_lr_scheduler
|
||||
|
||||
from clip import clip
|
||||
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
|
||||
def load_clip_to_cpu(cfg):
|
||||
backbone_name = cfg.MODEL.BACKBONE.NAME
|
||||
url = clip._MODELS[backbone_name]
|
||||
model_path = clip._download(url)
|
||||
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(model_path, map_location="cpu").eval()
|
||||
state_dict = None
|
||||
|
||||
except RuntimeError:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
design_details = {"trainer": 'IVLP',
|
||||
"vision_depth": cfg.TRAINER.IVLP.PROMPT_DEPTH_VISION,
|
||||
"language_depth": cfg.TRAINER.IVLP.PROMPT_DEPTH_TEXT, "vision_ctx": cfg.TRAINER.IVLP.N_CTX_VISION,
|
||||
"language_ctx": cfg.TRAINER.IVLP.N_CTX_TEXT}
|
||||
model = clip.build_model(state_dict or model.state_dict(), design_details)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, clip_model):
|
||||
super().__init__()
|
||||
self.transformer = clip_model.transformer
|
||||
self.positional_embedding = clip_model.positional_embedding
|
||||
self.ln_final = clip_model.ln_final
|
||||
self.text_projection = clip_model.text_projection
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, prompts, tokenized_prompts):
|
||||
x = prompts + self.positional_embedding.type(self.dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x).type(self.dtype)
|
||||
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class VLPromptLearner(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
n_cls = len(classnames)
|
||||
# Make sure Language depth >= 1
|
||||
assert cfg.TRAINER.IVLP.PROMPT_DEPTH_TEXT >= 1, "In Independent VL prompting, Language prompt depth should be >=1" \
|
||||
"\nPlease use VPT trainer if you want to learn only vision " \
|
||||
"branch "
|
||||
n_ctx = cfg.TRAINER.IVLP.N_CTX_TEXT
|
||||
ctx_init = cfg.TRAINER.IVLP.CTX_INIT
|
||||
dtype = clip_model.dtype
|
||||
ctx_dim = clip_model.ln_final.weight.shape[0]
|
||||
vis_dim = clip_model.visual.output_dim
|
||||
clip_imsize = clip_model.visual.input_resolution
|
||||
cfg_imsize = cfg.INPUT.SIZE[0]
|
||||
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
|
||||
|
||||
if ctx_init and (n_ctx) <= 4:
|
||||
# use given words to initialize context vectors
|
||||
ctx_init = ctx_init.replace("_", " ")
|
||||
n_ctx = n_ctx
|
||||
prompt = clip.tokenize(ctx_init)
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(prompt).type(dtype)
|
||||
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
|
||||
prompt_prefix = ctx_init
|
||||
else:
|
||||
# random initialization
|
||||
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
|
||||
nn.init.normal_(ctx_vectors, std=0.02)
|
||||
prompt_prefix = " ".join(["X"] * n_ctx)
|
||||
print(f"Independent V-L design")
|
||||
print(f'Initial text context: "{prompt_prefix}"')
|
||||
print(f"Number of context words (tokens) for Language prompting: {n_ctx}")
|
||||
print(f"Number of context words (tokens) for Vision prompting: {cfg.TRAINER.IVLP.N_CTX_VISION}")
|
||||
self.ctx = nn.Parameter(ctx_vectors)
|
||||
|
||||
classnames = [name.replace("_", " ") for name in classnames]
|
||||
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
||||
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
||||
|
||||
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
|
||||
|
||||
# These token vectors will be saved when in save_model(),
|
||||
# but they should be ignored in load_model() as we want to use
|
||||
# those computed using the current class names
|
||||
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
|
||||
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
|
||||
|
||||
self.n_cls = n_cls
|
||||
self.n_ctx = n_ctx
|
||||
self.tokenized_prompts = tokenized_prompts # torch.Tensor
|
||||
self.name_lens = name_lens
|
||||
|
||||
def construct_prompts(self, ctx, prefix, suffix, label=None):
|
||||
# dim0 is either batch_size (during training) or n_cls (during testing)
|
||||
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
|
||||
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
|
||||
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
|
||||
|
||||
if label is not None:
|
||||
prefix = prefix[label]
|
||||
suffix = suffix[label]
|
||||
|
||||
prompts = torch.cat(
|
||||
[
|
||||
prefix, # (dim0, 1, dim)
|
||||
ctx, # (dim0, n_ctx, dim)
|
||||
suffix, # (dim0, *, dim)
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
return prompts
|
||||
|
||||
def forward(self):
|
||||
ctx = self.ctx
|
||||
if ctx.dim() == 2:
|
||||
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
|
||||
|
||||
prefix = self.token_prefix
|
||||
suffix = self.token_suffix
|
||||
prompts = self.construct_prompts(ctx, prefix, suffix)
|
||||
|
||||
return prompts
|
||||
|
||||
|
||||
class CustomCLIP(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
self.prompt_learner = VLPromptLearner(cfg, classnames, clip_model)
|
||||
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
|
||||
self.image_encoder = clip_model.visual
|
||||
self.text_encoder = TextEncoder(clip_model)
|
||||
self.logit_scale = clip_model.logit_scale
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, image, label=None):
|
||||
tokenized_prompts = self.tokenized_prompts
|
||||
logit_scale = self.logit_scale.exp()
|
||||
|
||||
prompts = self.prompt_learner()
|
||||
text_features = self.text_encoder(prompts, tokenized_prompts)
|
||||
image_features = self.image_encoder(image.type(self.dtype))
|
||||
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
logits = logit_scale * image_features @ text_features.t()
|
||||
|
||||
if self.prompt_learner.training:
|
||||
return F.cross_entropy(logits, label)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class IVLP(TrainerX):
|
||||
def check_cfg(self, cfg):
|
||||
assert cfg.TRAINER.IVLP.PREC in ["fp16", "fp32", "amp"]
|
||||
|
||||
def build_model(self):
|
||||
cfg = self.cfg
|
||||
classnames = self.dm.dataset.classnames
|
||||
|
||||
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
|
||||
clip_model = load_clip_to_cpu(cfg)
|
||||
|
||||
if cfg.TRAINER.IVLP.PREC == "fp32" or cfg.TRAINER.IVLP.PREC == "amp":
|
||||
# CLIP's default precision is fp16
|
||||
clip_model.float()
|
||||
|
||||
print("Building custom CLIP")
|
||||
self.model = CustomCLIP(cfg, classnames, clip_model)
|
||||
|
||||
print("Turning off gradients in both the image and the text encoder")
|
||||
name_to_update = "prompt_learner"
|
||||
|
||||
for name, param in self.model.named_parameters():
|
||||
if name_to_update not in name:
|
||||
# Make sure that VPT prompts are updated
|
||||
if "VPT" in name:
|
||||
param.requires_grad_(True)
|
||||
else:
|
||||
param.requires_grad_(False)
|
||||
|
||||
# Double check
|
||||
enabled = set()
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad:
|
||||
enabled.add(name)
|
||||
print(f"Parameters to be updated: {enabled}")
|
||||
|
||||
if cfg.MODEL.INIT_WEIGHTS:
|
||||
load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS)
|
||||
|
||||
self.model.to(self.device)
|
||||
# NOTE: only give prompt_learner to the optimizer
|
||||
self.optim = build_optimizer(self.model, cfg.OPTIM)
|
||||
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
|
||||
self.register_model("VLPromptLearner", self.model, self.optim, self.sched)
|
||||
|
||||
self.scaler = GradScaler() if cfg.TRAINER.IVLP.PREC == "amp" else None
|
||||
|
||||
# Note that multi-gpu training could be slow because CLIP's size is
|
||||
# big, which slows down the copy operation in DataParallel
|
||||
device_count = torch.cuda.device_count()
|
||||
if device_count > 1:
|
||||
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
|
||||
self.model = nn.DataParallel(self.model)
|
||||
|
||||
def forward_backward(self, batch):
|
||||
image, label = self.parse_batch_train(batch)
|
||||
|
||||
model = self.model
|
||||
optim = self.optim
|
||||
scaler = self.scaler
|
||||
|
||||
prec = self.cfg.TRAINER.IVLP.PREC
|
||||
if prec == "amp":
|
||||
with autocast():
|
||||
loss = model(image, label)
|
||||
optim.zero_grad()
|
||||
scaler.scale(loss).backward()
|
||||
scaler.step(optim)
|
||||
scaler.update()
|
||||
else:
|
||||
loss = model(image, label)
|
||||
optim.zero_grad()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
loss_summary = {"loss": loss.item()}
|
||||
|
||||
if (self.batch_idx + 1) == self.num_batches:
|
||||
self.update_lr()
|
||||
|
||||
return loss_summary
|
||||
|
||||
def parse_batch_train(self, batch):
|
||||
input = batch["img"]
|
||||
label = batch["label"]
|
||||
input = input.to(self.device)
|
||||
label = label.to(self.device)
|
||||
return input, label
|
||||
|
||||
def load_model(self, directory, epoch=None):
|
||||
if not directory:
|
||||
print("Note that load_model() is skipped as no pretrained model is given")
|
||||
return
|
||||
|
||||
names = self.get_model_names()
|
||||
|
||||
# By default, the best model is loaded
|
||||
model_file = "model-best.pth.tar"
|
||||
|
||||
if epoch is not None:
|
||||
model_file = "model.pth.tar-" + str(epoch)
|
||||
|
||||
for name in names:
|
||||
model_path = osp.join(directory, name, model_file)
|
||||
|
||||
if not osp.exists(model_path):
|
||||
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
|
||||
|
||||
checkpoint = load_checkpoint(model_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
epoch = checkpoint["epoch"]
|
||||
|
||||
# Ignore fixed token vectors
|
||||
if "prompt_learner.token_prefix" in state_dict:
|
||||
del state_dict["prompt_learner.token_prefix"]
|
||||
|
||||
if "prompt_learner.token_suffix" in state_dict:
|
||||
del state_dict["prompt_learner.token_suffix"]
|
||||
|
||||
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
|
||||
# set strict=False
|
||||
self._models[name].load_state_dict(state_dict, strict=False)
|
||||
928
trainers/maple.py
Normal file
928
trainers/maple.py
Normal file
@@ -0,0 +1,928 @@
|
||||
import os.path as osp
|
||||
import random
|
||||
from collections import OrderedDict
|
||||
import math
|
||||
import copy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import time
|
||||
import os
|
||||
import pickle
|
||||
import deepcore.methods as s_method
|
||||
import numpy as np
|
||||
|
||||
from torch.nn import functional as F
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
|
||||
from dassl.engine import TRAINER_REGISTRY, TrainerX
|
||||
from dassl.metrics import compute_accuracy
|
||||
from dassl.utils import load_pretrained_weights, load_checkpoint, mkdir_if_missing
|
||||
from dassl.optim import build_optimizer, build_lr_scheduler
|
||||
from dassl.evaluation import Classification,EvaluatorBase
|
||||
from pygrad.pcgrad import PCGrad
|
||||
from datasets.data_manager import DataManager
|
||||
from dassl.data.datasets import build_dataset
|
||||
|
||||
|
||||
from clip import clip
|
||||
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
from trainers.zsclip import CUSTOM_TEMPLATES
|
||||
from .coop import load_clip_to_cpu as lcp
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import f1_score, confusion_matrix
|
||||
from collections import OrderedDict, defaultdict
|
||||
from .util import GradCAM,denorm
|
||||
import cv2
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
BACKGROUND_CATEGORY = ['ground','land','grass','tree','building','wall','sky','lake','water','river','sea','railway','railroad','keyboard','helmet',
|
||||
'cloud','house','mountain','ocean','road','rock','street','valley','bridge','sign',]
|
||||
|
||||
|
||||
#['ground','land','grass','tree','building','wall','sky','lake','water','river','sea','railway','railroad','keyboard','helmet',
|
||||
#'cloud','house','mountain','ocean','road','rock','street','valley','bridge','sign',
|
||||
#]
|
||||
|
||||
BACKGROUND_CATEGORY_FOOD = ['table','forks','tablecloth','hands','spoon','glasses','dishes']
|
||||
|
||||
def load_clip_to_cpu(cfg):
|
||||
backbone_name = cfg.MODEL.BACKBONE.NAME
|
||||
url = clip._MODELS[backbone_name]
|
||||
model_path = clip._download(url)
|
||||
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(model_path, map_location="cpu").eval()
|
||||
state_dict = None
|
||||
|
||||
except RuntimeError:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
design_details = {"trainer": 'MaPLe',
|
||||
"vision_depth": 0,
|
||||
"language_depth": 0, "vision_ctx": 0,
|
||||
"language_ctx": 0,
|
||||
"maple_length": cfg.TRAINER.MAPLE.N_CTX}
|
||||
|
||||
model = clip.build_model(state_dict or model.state_dict(), design_details)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, clip_model):
|
||||
super().__init__()
|
||||
self.transformer = clip_model.transformer
|
||||
self.positional_embedding = clip_model.positional_embedding
|
||||
self.ln_final = clip_model.ln_final
|
||||
self.text_projection = clip_model.text_projection
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, prompts, tokenized_prompts, compound_prompts_deeper_text):
|
||||
x = prompts + self.positional_embedding.type(self.dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
# Pass as the list, as nn.sequential cannot process multiple arguments in the forward pass
|
||||
combined = [x, compound_prompts_deeper_text, 0] # third argument is the counter which denotes depth of prompt
|
||||
outputs = self.transformer(combined)
|
||||
x = outputs[0] # extract the x back from here
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x).type(self.dtype)
|
||||
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class MultiModalPromptLearner(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
n_cls = len(classnames)
|
||||
n_ctx = cfg.TRAINER.MAPLE.N_CTX # n_ctx
|
||||
ctx_init = cfg.TRAINER.MAPLE.CTX_INIT # a photo of
|
||||
dtype = clip_model.dtype
|
||||
ctx_dim = clip_model.ln_final.weight.shape[0] #512
|
||||
clip_imsize = clip_model.visual.input_resolution #224
|
||||
cfg_imsize = cfg.INPUT.SIZE[0] #224
|
||||
# Default is 1, which is compound shallow prompting
|
||||
assert cfg.TRAINER.MAPLE.PROMPT_DEPTH >= 1, "For MaPLe, PROMPT_DEPTH should be >= 1"
|
||||
self.compound_prompts_depth = cfg.TRAINER.MAPLE.PROMPT_DEPTH #9 # max=12, but will create 11 such shared prompts
|
||||
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
|
||||
|
||||
if ctx_init and (n_ctx) <= 4:
|
||||
# use given words to initialize context vectors
|
||||
ctx_init = ctx_init.replace("_", " ")
|
||||
n_ctx = n_ctx
|
||||
prompt = clip.tokenize(ctx_init)
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(prompt).type(dtype)
|
||||
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
|
||||
prompt_prefix = ctx_init
|
||||
else:
|
||||
# random initialization
|
||||
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
|
||||
nn.init.normal_(ctx_vectors, std=0.02)
|
||||
prompt_prefix = " ".join(["X"] * n_ctx)
|
||||
print('MaPLe design: Multi-modal Prompt Learning')
|
||||
print(f'Initial context: "{prompt_prefix}"')
|
||||
print(f"Number of MaPLe context words (tokens): {n_ctx}")
|
||||
# These below, related to the shallow prompts
|
||||
# Linear layer so that the tokens will project to 512 and will be initialized from 768
|
||||
self.proj = nn.Linear(ctx_dim, 768)
|
||||
self.proj.half()
|
||||
self.ctx = nn.Parameter(ctx_vectors) #[2 512]
|
||||
# These below parameters related to the shared prompts
|
||||
# Define the compound prompts for the deeper layers
|
||||
|
||||
# Minimum can be 1, which defaults to shallow MaPLe
|
||||
# compound prompts
|
||||
self.compound_prompts_text = nn.ParameterList([nn.Parameter(torch.empty(n_ctx, 512))
|
||||
for _ in range(self.compound_prompts_depth - 1)])
|
||||
for single_para in self.compound_prompts_text:
|
||||
nn.init.normal_(single_para, std=0.02)
|
||||
# Also make corresponding projection layers, for each prompt
|
||||
single_layer = nn.Linear(ctx_dim, 768)
|
||||
self.compound_prompt_projections = _get_clones(single_layer, self.compound_prompts_depth - 1)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
classnames = [name.replace("_", " ") for name in classnames]
|
||||
|
||||
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
||||
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
||||
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
|
||||
|
||||
|
||||
###Introduce Background
|
||||
bg_template = 'a clean origami {}.'
|
||||
|
||||
bg_classesnames = [bg_template.format(name) for name in BACKGROUND_CATEGORY +BACKGROUND_CATEGORY_FOOD ]
|
||||
tokenized_bg_prompts = torch.cat([clip.tokenize(bg) for bg in bg_classesnames])
|
||||
bg_num = len(BACKGROUND_CATEGORY) + len(BACKGROUND_CATEGORY_FOOD)
|
||||
tokenized_prompts = torch.cat((tokenized_prompts,tokenized_bg_prompts),dim=0)
|
||||
|
||||
with torch.no_grad():
|
||||
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
|
||||
self.bg_embeding = embedding[-bg_num:]
|
||||
|
||||
# These token vectors will be saved when in save_model(),
|
||||
# but they should be ignored in load_model() as we want to use
|
||||
# those computed using the current class names
|
||||
self.register_buffer("token_prefix", embedding[:-bg_num, :1, :]) # SOS
|
||||
self.register_buffer("token_suffix", embedding[:-bg_num, 1 + n_ctx:, :]) # CLS, EOS
|
||||
|
||||
self.n_cls = n_cls
|
||||
self.n_ctx = n_ctx
|
||||
self.tokenized_prompts = tokenized_prompts # torch.Tensor [class_num 77] [:-bg_num]
|
||||
self.name_lens = name_lens
|
||||
|
||||
def construct_prompts(self, ctx, prefix, suffix, label=None):
|
||||
# dim0 is either batch_size (during training) or n_cls (during testing)
|
||||
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
|
||||
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
|
||||
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
|
||||
|
||||
|
||||
|
||||
if label is not None:
|
||||
prefix = prefix[label]
|
||||
suffix = suffix[label]
|
||||
|
||||
prompts = torch.cat(
|
||||
[
|
||||
prefix, # (dim0, 1, dim)
|
||||
ctx, # (dim0, n_ctx, dim)
|
||||
suffix, # (dim0, *, dim)
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
final_prompts = torch.cat((prompts,self.bg_embeding.cuda()),dim=0)
|
||||
return final_prompts
|
||||
|
||||
def forward(self):
|
||||
ctx = self.ctx
|
||||
|
||||
if ctx.dim() == 2:
|
||||
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
|
||||
|
||||
prefix = self.token_prefix
|
||||
suffix = self.token_suffix
|
||||
prompts = self.construct_prompts(ctx, prefix, suffix)
|
||||
|
||||
# Before returning, need to transform
|
||||
# prompts to 768 for the visual side
|
||||
visual_deep_prompts = []
|
||||
for index, layer in enumerate(self.compound_prompt_projections):
|
||||
visual_deep_prompts.append(layer(self.compound_prompts_text[index]))
|
||||
# Now the other way around
|
||||
# We will project the textual prompts from 512 to 768
|
||||
return prompts, self.proj(self.ctx), self.compound_prompts_text, visual_deep_prompts # pass here original, as for visual 768 is required
|
||||
|
||||
|
||||
class CustomCLIP(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
self.prompt_learner = MultiModalPromptLearner(cfg, classnames, clip_model)
|
||||
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
|
||||
self.image_encoder = clip_model.visual
|
||||
self.image_encoder_ori = clip_model.visual_ori
|
||||
self.text_encoder = TextEncoder(clip_model)
|
||||
self.logit_scale = clip_model.logit_scale
|
||||
self.dtype = clip_model.dtype
|
||||
self.txt_f = []
|
||||
self.img_f = []
|
||||
self.one_hot_label = []
|
||||
self.vtx = []
|
||||
self.loaded_mask = None
|
||||
# self.loss_weights = torch.nn.Parameter(torch.tensor([0.8,0.03],dtype=self.dtype))
|
||||
|
||||
|
||||
|
||||
def get_uniform_ball_noise(self,input_shape,radius=1.0):
|
||||
uniform_noise_ball = torch.randn(input_shape).cuda()
|
||||
uniform_noise_sphere = F.normalize(uniform_noise_ball,dim=1)
|
||||
u = torch.rand(input_shape[0]).cuda()
|
||||
u = u **(1. / input_shape[1])
|
||||
uniform_noise_ball = (uniform_noise_sphere.T *u *radius).T
|
||||
return uniform_noise_ball.type(self.dtype)
|
||||
|
||||
|
||||
def get_learnable_noise(self,input_shape):
|
||||
para = 0.05
|
||||
noise = torch.nn.Parameter(torch.randn(input_shape)*para).cuda()
|
||||
|
||||
return noise.type(self.dtype)
|
||||
|
||||
def cos_sim(self,a,b):
|
||||
return F.cosine_similarity(a,b)
|
||||
|
||||
def forward(self, image, label=None,record=False,cal_gradient=False,weight=None,epoch=None,index=None,cfg=None,mask=None):
|
||||
tokenized_prompts = self.tokenized_prompts
|
||||
logit_scale = self.logit_scale.exp()
|
||||
|
||||
prompts, shared_ctx, deep_compound_prompts_text, deep_compound_prompts_vision = self.prompt_learner()
|
||||
text_features = self.text_encoder(prompts, tokenized_prompts, deep_compound_prompts_text)
|
||||
text_features_fg = text_features[:-len(BACKGROUND_CATEGORY)]
|
||||
ori_image_input = image.type(self.dtype)
|
||||
# text_features = text_features + self.get_learnable_noise(text_features.shape)
|
||||
|
||||
text_features_fg = text_features_fg / text_features_fg.norm(dim=-1, keepdim=True)
|
||||
|
||||
image_features, visual_ctx, mask_similarity = self.image_encoder(ori_image_input, shared_ctx,
|
||||
deep_compound_prompts_vision)
|
||||
|
||||
|
||||
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
# if label is not None:
|
||||
# image_features = image_features + self.get_uniform_ball_noise(image_features.shape)
|
||||
|
||||
logits = logit_scale * image_features @ text_features_fg.t()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if mask != None:
|
||||
|
||||
|
||||
|
||||
text_features_bg = text_features[-len(BACKGROUND_CATEGORY):]
|
||||
text_features_bg = text_features_bg / text_features_bg.norm(dim=-1, keepdim=True)
|
||||
image_features_fg,_,_ = self.image_encoder(ori_image_input*mask, shared_ctx, deep_compound_prompts_vision) #, shared_ctx, deep_compound_prompts_vision
|
||||
|
||||
|
||||
image_features_fg = image_features_fg / image_features_fg.norm(dim=-1, keepdim=True)
|
||||
image_features_bg,_,_ = self.image_encoder(ori_image_input*(1-mask), shared_ctx, deep_compound_prompts_vision)
|
||||
image_features_bg = image_features_bg / image_features_bg.norm(dim=-1, keepdim=True)
|
||||
|
||||
|
||||
loss_re1 = F.triplet_margin_loss(image_features,image_features_fg.detach(),image_features_bg.detach(),margin=1.5)
|
||||
|
||||
# image_features_fg_ori = self.image_encoder_ori(ori_image_input*mask_random)
|
||||
# image_features_bg_ori = self.image_encoder_ori(ori_image_input*(1-mask_random))
|
||||
# image_features_fg_ori = image_features_fg_ori / image_features_fg_ori.norm(dim=-1, keepdim=True)
|
||||
# image_features_bg_ori = image_features_bg_ori / image_features_bg_ori.norm(dim=-1,keepdim=True)
|
||||
# image_features_all_ori = image_features_fg_ori + image_features_bg_ori
|
||||
# image_features_all_ori = image_features_all_ori / image_features_all_ori.norm(dim=-1,keepdim=True)
|
||||
# loss_reo = torch.abs(image_features_all_ori.detach() - image_features).mean()
|
||||
|
||||
foreground_score = logit_scale*image_features_fg.detach()@text_features_fg.t()
|
||||
pseudo_label = torch.argmax(image_features_bg @ text_features_bg.t(), dim=-1)
|
||||
logits_bg = logit_scale*(image_features_bg) @ text_features_bg.t()
|
||||
|
||||
para_bg = 0.5
|
||||
para_fg = 0.1
|
||||
para_vd = 0.8
|
||||
|
||||
|
||||
loss_bg = F.cross_entropy(logits_bg,pseudo_label)
|
||||
loss_fg = F.cross_entropy(foreground_score,label)
|
||||
|
||||
if epoch > 6: #Tunable parameters
|
||||
loss_re = para_fg*loss_fg + para_bg*loss_bg
|
||||
else:
|
||||
loss_re = para_vd*loss_re1 #loss_reo would be effective in base2novel setting
|
||||
|
||||
|
||||
if self.prompt_learner.training:
|
||||
if weight is None:
|
||||
return F.cross_entropy(logits,label)+loss_re,logits,{'loss_vd':loss_re1.item(),'loss_bg':loss_bg.item(),'loss_fg':loss_fg.item()}
|
||||
else:
|
||||
return F.cross_entropy(weight.unsqueeze(-1)*logits,label), logits
|
||||
|
||||
if record: #store the embeeding
|
||||
one_hot_label = F.one_hot(label,num_classes=text_features.shape[0]).to(torch.float16)
|
||||
return image_features.detach(),(one_hot_label @ text_features).detach(), logits
|
||||
|
||||
if cal_gradient:
|
||||
#Treating this as initial gradient
|
||||
# one_hot_label = F.one_hot(label,num_classes=text_features.shape[0]).to(torch.float16)
|
||||
return F.cross_entropy(logits.requires_grad_(True), label), image_features.detach(), logits #,(one_hot_label @ text_features).detach()
|
||||
return logits
|
||||
|
||||
def grad_norm(self,loss_group,original_loss_group):
|
||||
alpha = 0.10
|
||||
self.loss_weights.grad.data = self.loss_weights.grad.data * 0.0
|
||||
W = self.prompt_learner.compound_prompt_projections[0]
|
||||
norms = []
|
||||
for i in range(len(loss_group)):
|
||||
gygw = torch.autograd.grad(loss_group[i],W.parameters(),retain_graph=True)
|
||||
norms.append(torch.norm(torch.mul(self.loss_weights[i],gygw[0])))
|
||||
norms = torch.stack(norms)
|
||||
loss_ratio = loss_group.data.cpu().numpy() / original_loss_group
|
||||
inverse_train_rate = loss_ratio / np.mean(loss_ratio)
|
||||
mean_norm = np.mean(norms.data.cpu().numpy())
|
||||
constant_norm = torch.tensor(mean_norm*(inverse_train_rate**alpha),requires_grad=False).cuda()
|
||||
grad_norm_loss = torch.sum(torch.abs(norms - constant_norm))
|
||||
|
||||
|
||||
|
||||
self.loss_weights.grad = torch.autograd.grad(grad_norm_loss,self.loss_weights)[0]
|
||||
|
||||
|
||||
|
||||
|
||||
def forward_test(self, image, label=None,record=False,cal_gradient=False,weight=None,cfg=None,attn_mask=False):
|
||||
tokenized_prompts = self.tokenized_prompts
|
||||
logit_scale = self.logit_scale.exp()
|
||||
|
||||
prompts, shared_ctx, deep_compound_prompts_text, deep_compound_prompts_vision = self.prompt_learner()
|
||||
text_features = self.text_encoder(prompts, tokenized_prompts, deep_compound_prompts_text)
|
||||
image_features,visual_ctx,mask = self.image_encoder(image.type(self.dtype), shared_ctx, deep_compound_prompts_vision)
|
||||
|
||||
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
logits = logit_scale * image_features @ text_features.t()
|
||||
|
||||
|
||||
if self.prompt_learner.training:
|
||||
if weight is None:
|
||||
return F.cross_entropy(logits, label),logits
|
||||
else:
|
||||
return F.cross_entropy(weight.unsqueeze(-1)*logits,label), logits
|
||||
|
||||
if record: #store the embeeding
|
||||
one_hot_label = F.one_hot(label,num_classes=text_features.shape[0]).to(torch.float16)
|
||||
return image_features.detach(),(one_hot_label @ text_features).detach(), logits
|
||||
if attn_mask:
|
||||
return logits,mask
|
||||
if cal_gradient:
|
||||
#Treating this as initial gradient
|
||||
# one_hot_label = F.one_hot(label,num_classes=text_features.shape[0]).to(torch.float16)
|
||||
return F.cross_entropy(logits.requires_grad_(True), label), image_features.detach(), logits #,(one_hot_label @ text_features).detach()
|
||||
return logits
|
||||
|
||||
def _get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class MaPLe(TrainerX):
|
||||
|
||||
|
||||
|
||||
def check_cfg(self, cfg):
|
||||
assert cfg.TRAINER.MAPLE.PREC in ["fp16", "fp32", "amp"]
|
||||
|
||||
|
||||
|
||||
def build_model(self):
|
||||
cfg = self.cfg
|
||||
classnames = self.dm.dataset.classnames
|
||||
|
||||
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
|
||||
clip_model = load_clip_to_cpu(cfg)
|
||||
|
||||
if cfg.TRAINER.MAPLE.PREC == "fp32" or cfg.TRAINER.MAPLE.PREC == "amp":
|
||||
# CLIP's default precision is fp16
|
||||
clip_model.float()
|
||||
|
||||
print("Building custom CLIP")
|
||||
self.model = CustomCLIP(cfg, classnames, clip_model)
|
||||
|
||||
print("Turning off gradients in both the image and the text encoder")
|
||||
name_to_update = "prompt_learner"
|
||||
|
||||
for name, param in self.model.named_parameters():
|
||||
|
||||
|
||||
if name_to_update not in name:
|
||||
# Make sure that VPT prompts are updated
|
||||
if "VPT" in name:
|
||||
param.requires_grad_(True)
|
||||
else:
|
||||
param.requires_grad_(False)
|
||||
|
||||
|
||||
# Double check
|
||||
enabled = set()
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad:
|
||||
enabled.add(name)
|
||||
print(f"Parameters to be updated: {enabled}")
|
||||
|
||||
if cfg.MODEL.INIT_WEIGHTS:
|
||||
load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS)
|
||||
|
||||
self.model.to(self.device)
|
||||
# self.model.loss_weights.requires_grad_(True) #open gradient for loss_weights
|
||||
# NOTE: only give prompt_learner to the optimizer
|
||||
|
||||
|
||||
self.optim = build_optimizer(self.model, cfg.OPTIM)
|
||||
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
|
||||
|
||||
|
||||
|
||||
self.selected_optim = build_optimizer(self.model, cfg.OPTIM_SELECTION)
|
||||
self.selected_sched = build_lr_scheduler(self.optim, cfg.OPTIM_SELECTION)
|
||||
|
||||
self.register_model("MultiModalPromptLearner", self.model, self.optim, self.sched)
|
||||
|
||||
self.scaler = GradScaler() if cfg.TRAINER.MAPLE.PREC == "amp" else None
|
||||
|
||||
# Note that multi-gpu training could be slow because CLIP's size is
|
||||
# big, which slows down the copy operation in DataParallel
|
||||
# device_count = torch.cuda.device_count()
|
||||
# if device_count > 1:
|
||||
# print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
|
||||
# self.model = nn.DataParallel(self.model)
|
||||
|
||||
|
||||
# def generate_text_feature(self):
|
||||
# cfg = self.cfg
|
||||
# classnames = self.dm.dataset.classnames
|
||||
# #
|
||||
# # print(f"Loading Custom CLIP (backbone: {cfg.MODEL.BACKBONE.NAME}) for selection")
|
||||
# # clip_model = lcp(cfg)
|
||||
# # clip_model.to(self.device)
|
||||
#
|
||||
# temp = CUSTOM_TEMPLATES[cfg.DATASET.NAME]
|
||||
# prompts = [temp.format(c.replace("_", " ")) for c in classnames]
|
||||
# print(f"Prompts: {prompts}")
|
||||
# prompts = torch.cat([clip.tokenize(p) for p in prompts])
|
||||
# prompts = prompts.to(self.device)
|
||||
#
|
||||
# p, _, deep_compound_prompts_text, _ = self.model.prompt_learner()
|
||||
# with torch.no_grad():
|
||||
# text = self.model.text_encoder(prompts)
|
||||
# text_features = self.model.encode_text(prompts, tokenized_prompts, deep_compound_prompts_text)
|
||||
# text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
#
|
||||
# self.ori_text_features = text_features
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def forward_backward(self, batch):
|
||||
if self.sample_weights is not None:
|
||||
image, label,index,mask = self.parse_batch_train_pair(batch)
|
||||
else:
|
||||
image, label,index,mask = self.parse_batch_train_pair(batch)
|
||||
weight = None
|
||||
|
||||
model = self.model
|
||||
optim = self.optim
|
||||
scaler = self.scaler
|
||||
|
||||
|
||||
prec = self.cfg.TRAINER.MAPLE.PREC
|
||||
if prec == "amp":
|
||||
with autocast():
|
||||
loss,_ = model(image, label, weight=weight,mask=mask)
|
||||
optim.zero_grad()
|
||||
scaler.scale(loss).backward()
|
||||
scaler.step(optim)
|
||||
scaler.update()
|
||||
else:
|
||||
loss,_,loss_dict = model(image, label, weight=weight,epoch=self.epoch,index=index,cfg=self.cfg,mask=mask)
|
||||
optim.zero_grad()
|
||||
|
||||
# optim.pc_backward(loss_task)
|
||||
loss.backward()
|
||||
# if self.epoch == 0:
|
||||
# self.loss_o1 = loss_task.data.cpu().numpy()
|
||||
# model.grad_norm(loss_task,self.loss_o1)
|
||||
|
||||
optim.step()
|
||||
|
||||
# normalized_coeff = 2 / torch.sum(model.loss_weights.data,dim=0)
|
||||
# model.loss_weights.data *= normalized_coeff
|
||||
|
||||
|
||||
|
||||
|
||||
loss_summary = loss_dict
|
||||
|
||||
if (self.batch_idx + 1) == self.num_batches:
|
||||
self.update_lr()
|
||||
|
||||
|
||||
return loss_summary
|
||||
|
||||
def parse_batch_train_pair(self, batch):
|
||||
input = batch["img"]
|
||||
label = batch["label"]
|
||||
index = batch["index"]
|
||||
mask = batch['mask']
|
||||
input = input.to(self.device)
|
||||
label = label.to(self.device)
|
||||
mask = mask.to(self.device)
|
||||
|
||||
if self.sample_weights is not None:
|
||||
# weight = batch['weight'].cuda()
|
||||
return input, label,index,mask
|
||||
else:
|
||||
return input, label,index,mask
|
||||
|
||||
|
||||
|
||||
def parse_batch_train(self, batch):
|
||||
input = batch["img"]
|
||||
label = batch["label"]
|
||||
index = batch["index"]
|
||||
input = input.to(self.device)
|
||||
label = label.to(self.device)
|
||||
|
||||
|
||||
if self.sample_weights is not None:
|
||||
weight = batch['weight'].cuda()
|
||||
return input, label,weight,index
|
||||
else:
|
||||
return input, label,index
|
||||
|
||||
def load_model(self, directory, epoch=None):
|
||||
if not directory:
|
||||
print("Note that load_model() is skipped as no pretrained model is given")
|
||||
return
|
||||
|
||||
names = self.get_model_names()
|
||||
|
||||
# By default, the best model is loaded
|
||||
model_file = "model-best.pth.tar"
|
||||
|
||||
if epoch is not None:
|
||||
model_file = "model.pth.tar-" + str(epoch)
|
||||
|
||||
for name in names:
|
||||
model_path = osp.join(directory, name, model_file)
|
||||
|
||||
if not osp.exists(model_path):
|
||||
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
|
||||
|
||||
checkpoint = load_checkpoint(model_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
epoch = checkpoint["epoch"]
|
||||
|
||||
# Ignore fixed token vectors
|
||||
if "prompt_learner.token_prefix" in state_dict:
|
||||
del state_dict["prompt_learner.token_prefix"]
|
||||
|
||||
if "prompt_learner.token_suffix" in state_dict:
|
||||
del state_dict["prompt_learner.token_suffix"]
|
||||
|
||||
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
|
||||
# set strict=False
|
||||
self._models[name].load_state_dict(state_dict, strict=False)
|
||||
|
||||
def before_train(self):
|
||||
directory = self.cfg.OUTPUT_DIR
|
||||
if self.cfg.RESUME:
|
||||
directory = self.cfg.RESUME
|
||||
# self.start_epoch = self.resume_model_if_exist(directory) #in case of loading pre-trained weight
|
||||
|
||||
|
||||
# Redefine the dataloader
|
||||
selected_res = self.selector()
|
||||
if 'weights' in selected_res:
|
||||
c_weight = np.zeros(len(self.dm.dataset.train_x))
|
||||
c_weight[selected_res['indices']] = selected_res['weights']
|
||||
self.sample_weights = c_weight[selected_res['indices']]
|
||||
else:
|
||||
self.sample_weights = None
|
||||
|
||||
|
||||
|
||||
self.build_final_data_loader(selected_res['indices'],self.sample_weights)
|
||||
print(f'Finish the selecting process, now continue tune CLIP')
|
||||
# Initialize summary writer
|
||||
writer_dir = osp.join(self.output_dir, "tensorboard")
|
||||
mkdir_if_missing(writer_dir)
|
||||
self.init_writer(writer_dir)
|
||||
|
||||
# Remember the starting time (for computing the elapsed time)
|
||||
self.time_start = time.time()
|
||||
|
||||
print(f"Now generate the attentive masking in {self.cfg.TRAINER.DAPT_MODE} \n")
|
||||
|
||||
|
||||
if self.cfg.TRAINER.DAPT_MODE == 'dapt-s':
|
||||
self.generate_mask_train()
|
||||
else:
|
||||
self.generate_gradcam_train(split='train')
|
||||
|
||||
|
||||
|
||||
def after_epoch(self):
|
||||
last_epoch = (self.epoch + 1) == self.max_epoch
|
||||
do_test = not self.cfg.TEST.NO_TEST
|
||||
meet_checkpoint_freq = (
|
||||
(self.epoch + 1) % self.cfg.TRAIN.CHECKPOINT_FREQ == 0
|
||||
if self.cfg.TRAIN.CHECKPOINT_FREQ > 0 else False)
|
||||
|
||||
if do_test and self.cfg.TEST.FINAL_MODEL == "best_val":
|
||||
curr_result = self.test(split="val")
|
||||
is_best = curr_result > self.best_result
|
||||
if is_best:
|
||||
self.best_result = curr_result
|
||||
self.save_model(
|
||||
self.epoch,
|
||||
self.output_dir,
|
||||
val_result=curr_result,
|
||||
model_name="model-best.pth.tar"
|
||||
)
|
||||
|
||||
# if meet_checkpoint_freq or last_epoch:
|
||||
# self.save_model(self.epoch, self.output_dir)
|
||||
|
||||
print(f"Now generate the attentive masking in {self.cfg.TRAINER.DAPT_MODE} \n")
|
||||
|
||||
|
||||
if self.cfg.TRAINER.DAPT_MODE == 'dapt-s':
|
||||
self.generate_mask_train()
|
||||
else:
|
||||
self.generate_gradcam_train(split='train')
|
||||
|
||||
|
||||
|
||||
|
||||
def build_final_data_loader(self,selected_ind=None,weight=None):
|
||||
new_dm = DataManager(self.cfg,self.dm.dataset,selected_ind,weight=weight)
|
||||
self.train_loader_x = new_dm.train_loader_x
|
||||
self.train_loader_xmore = new_dm.train_loader_xmore #for generate the attentive masking
|
||||
self.mask_list = torch.zeros((selected_ind.shape[0], 1, *self.cfg.INPUT.SIZE),dtype=torch.float16)
|
||||
|
||||
def selector(self):
|
||||
selection_ratio = self.cfg.DATASET.SELECTION_RATIO
|
||||
seed = self.cfg.SEED
|
||||
method = self.cfg.DATASET.SELECTION_METHOD
|
||||
print(f"Selecting {selection_ratio*100}% data by {method}")
|
||||
|
||||
if self.cfg.DATASET.SELECTION_METHOD == 'Uniform':
|
||||
|
||||
|
||||
selector = s_method.Uniform(self.dm, self.cfg,selection_ratio, seed)
|
||||
else:
|
||||
|
||||
selector = s_method.__dict__[method](dst_train=self.dm,
|
||||
args=self.cfg,
|
||||
fraction=selection_ratio,
|
||||
random_seed=seed,
|
||||
specific_model=self.model,
|
||||
optim = self.selected_optim,
|
||||
schedule = self.selected_sched,
|
||||
scar = self.scaler,
|
||||
balance = True
|
||||
)
|
||||
|
||||
|
||||
return selector.select()
|
||||
|
||||
@torch.no_grad()
|
||||
def test_withlabel(self, split=None):
|
||||
"""A generic testing pipeline."""
|
||||
self.set_model_mode("eval")
|
||||
new_estimate = NewClassification(self.cfg,self.evaluator._lab2cname)
|
||||
new_estimate.reset()
|
||||
|
||||
if split is None:
|
||||
split = self.cfg.TEST.SPLIT
|
||||
|
||||
if split == "val" and self.val_loader is not None:
|
||||
data_loader = self.val_loader
|
||||
else:
|
||||
split = "test" # in case val_loader is None
|
||||
data_loader = self.test_loader
|
||||
|
||||
print(f"Evaluate on the *{split}* set")
|
||||
|
||||
for batch_idx, batch in enumerate(tqdm(data_loader)):
|
||||
input, label = self.parse_batch_test(batch)
|
||||
|
||||
output = self.model.forward_test(input,label,cfg = self.cfg)
|
||||
new_estimate.process(output, label)
|
||||
|
||||
results = new_estimate.evaluate()
|
||||
|
||||
for k, v in results.items():
|
||||
tag = f"{split}/{k}"
|
||||
self.write_scalar(tag, v, self.epoch)
|
||||
|
||||
return list(results.values())[0]
|
||||
|
||||
|
||||
def generate_gradcam(self, split=None,attn_mask=False):
|
||||
"""A generic pipeline for generating GradCAM"""
|
||||
self.set_model_mode("eval")
|
||||
model_dict = {'arch':self.model,'layer_name':'target.layer'}
|
||||
cam = GradCAM(model_dict)
|
||||
# new_estimate = NewClassification(self.cfg,self.evaluator._lab2cname)
|
||||
# new_estimate.reset()
|
||||
|
||||
img_split = 'wrong' #true/wrong
|
||||
if split is None:
|
||||
split = self.cfg.TEST.SPLIT
|
||||
|
||||
if split == "val" and self.val_loader is not None:
|
||||
data_loader = self.val_loader
|
||||
else:
|
||||
split = "test" # in case val_loader is None
|
||||
data_loader = self.test_loader
|
||||
|
||||
print(f"Generate GradCAM on the *{split}* set")
|
||||
|
||||
save_path = self.cfg.OUTPUT_DIR + '/'+f'{split}_{img_split}_promptcamother'
|
||||
if not os.path.exists(save_path):
|
||||
os.mkdir(save_path)
|
||||
for batch_idx, batch in enumerate(tqdm(data_loader)):
|
||||
input, label = self.parse_batch_test(batch)
|
||||
img_name = batch['impath'][0].split('/')[-1]
|
||||
img_save_path = os.path.join(save_path, img_name)
|
||||
img0 = denorm(batch['img0'].numpy(),self.cfg.INPUT.PIXEL_MEAN,self.cfg.INPUT.PIXEL_STD)
|
||||
saliency_map = cam.forward(input,label,cfg = self.cfg,split=img_split,attn_mask=attn_mask)
|
||||
if saliency_map != None:
|
||||
final_map = cam.show_cam(img0,saliency_map.detach().cpu(),img_save_path)
|
||||
|
||||
|
||||
|
||||
|
||||
def generate_mask_train(self):
|
||||
for batch_idx, batch in enumerate(tqdm(self.train_loader_xmore)):
|
||||
input, _, index = self.parse_batch_train(batch)
|
||||
b,c,h,w = input.shape
|
||||
mask = torch.ones((1,h,w),dtype=torch.float16)
|
||||
grid_sizes = [32,16]
|
||||
hide_prob = 0.5
|
||||
grid_size = grid_sizes[torch.randint(0,len(grid_sizes),size=(1,))]
|
||||
|
||||
if (grid_size != 0):
|
||||
for x in range(0,h,grid_size):
|
||||
for y in range(0,w,grid_size):
|
||||
x_end,y_end = min(h, x+grid_size),min(w,y+grid_size)
|
||||
if (random.random() <= hide_prob):
|
||||
mask[:,x:x_end,y:y_end] = 0
|
||||
self.mask_list[index, :] = mask
|
||||
self.model.loaded_mask = self.mask_list
|
||||
|
||||
|
||||
def generate_mask_bg(self):
|
||||
for batch_idx, batch in enumerate(tqdm(self.train_loader_xmore)):
|
||||
input, _, index = self.parse_batch_train(batch)
|
||||
b,c,h,w = input.shape
|
||||
mask = torch.ones((1,h,w),dtype=torch.float16)
|
||||
grid_sizes = [64,128]
|
||||
hide_prob = 0.5
|
||||
grid_size = grid_sizes[torch.randint(0,len(grid_sizes),size=(1,))]
|
||||
|
||||
if (grid_size != 0):
|
||||
for x in range(0,h,grid_size):
|
||||
for y in range(0,w,grid_size):
|
||||
x_end,y_end = min(h, x+grid_size),min(w,y+grid_size)
|
||||
if (random.random() <= hide_prob):
|
||||
mask[:,x:x_end,y:y_end] = 0
|
||||
self.mask_list[index, :] = mask
|
||||
self.model.loaded_mask = self.mask_list
|
||||
|
||||
|
||||
def generate_gradcam_train(self, split=None,attn_mask=False):
|
||||
"""A generic pipeline for generating GradCAM"""
|
||||
self.set_model_mode("eval")
|
||||
model_dict = {'arch':self.model,'layer_name':'target.layer'}
|
||||
cam = GradCAM(model_dict)
|
||||
# new_estimate = NewClassification(self.cfg,self.evaluator._lab2cname)
|
||||
# new_estimate.reset()
|
||||
|
||||
print(f"Generate GradCAM on the *{split}* set")
|
||||
|
||||
# save_path = self.cfg.OUTPUT_DIR + '/'+f'{split}_{img_split}_promptcamother'
|
||||
# if not os.path.exists(save_path):
|
||||
# os.mkdir(save_path)
|
||||
for batch_idx, batch in enumerate(tqdm(self.train_loader_xmore)):
|
||||
input, label, index = self.parse_batch_train(batch)
|
||||
# img0 = denorm(batch['img0'].numpy(),self.cfg.INPUT.PIXEL_MEAN,self.cfg.INPUT.PIXEL_STD)
|
||||
saliency_map = cam.forward_train(input,label,cfg = self.cfg,attn_mask=attn_mask)
|
||||
self.mask_list[index,:] = saliency_map.detach().cpu()
|
||||
# if saliency_map != None:
|
||||
# final_map = cam.show_cam(img0,saliency_map.detach().cpu(),img_save_path)
|
||||
self.model.loaded_mask = self.mask_list
|
||||
|
||||
|
||||
class NewClassification(Classification):
|
||||
def __init__(self, cfg, lab2cname=None, **kwargs):
|
||||
super(NewClassification, self).__init__(cfg,lab2cname)
|
||||
self._lab2cname = lab2cname
|
||||
self._correct = 0
|
||||
self._total = 0
|
||||
self._per_class_res = None
|
||||
self._y_true = []
|
||||
self._y_pred = []
|
||||
if cfg.TEST.PER_CLASS_RESULT:
|
||||
assert lab2cname is not None
|
||||
self._per_class_res = defaultdict(list)
|
||||
|
||||
def evaluate(self):
|
||||
results = OrderedDict()
|
||||
acc = 100.0 * self._correct / self._total
|
||||
err = 100.0 - acc
|
||||
macro_f1 = 100.0 * f1_score(
|
||||
self._y_true,
|
||||
self._y_pred,
|
||||
average="macro",
|
||||
labels=np.unique(self._y_true)
|
||||
)
|
||||
|
||||
# The first value will be returned by trainer.test()
|
||||
results["accuracy"] = acc
|
||||
results["error_rate"] = err
|
||||
results["macro_f1"] = macro_f1
|
||||
|
||||
wrong_ind = np.array(self._y_true) != np.array(self._y_pred)
|
||||
np.save(self.cfg.OUTPUT_DIR + '/'+'wrongind.npy',wrong_ind)
|
||||
print(
|
||||
"=> result\n"
|
||||
f"* total: {self._total:,}\n"
|
||||
f"* correct: {self._correct:,}\n"
|
||||
f"* accuracy: {acc:.1f}%\n"
|
||||
f"* error: {err:.1f}%\n"
|
||||
f"* macro_f1: {macro_f1:.1f}%"
|
||||
)
|
||||
|
||||
if self._per_class_res is not None:
|
||||
labels = list(self._per_class_res.keys())
|
||||
labels.sort()
|
||||
|
||||
print("=> per-class result")
|
||||
accs = []
|
||||
|
||||
for label in labels:
|
||||
classname = self._lab2cname[label]
|
||||
res = self._per_class_res[label]
|
||||
correct = sum(res)
|
||||
total = len(res)
|
||||
acc = 100.0 * correct / total
|
||||
accs.append(acc)
|
||||
|
||||
print(
|
||||
f"* class: {label} ({classname})\t"
|
||||
f"total: {total:,}\t"
|
||||
f"correct: {correct:,}\t"
|
||||
f"acc: {acc:.1f}%"
|
||||
)
|
||||
|
||||
mean_acc = np.mean(accs)
|
||||
np.save(self.cfg.OUTPUT_DIR + '/'+'per-class.npy',{'per_cls':accs, 'mean_acc':mean_acc})
|
||||
print(f"* average: {mean_acc:.1f}%")
|
||||
|
||||
results["perclass_accuracy"] = mean_acc
|
||||
|
||||
if self.cfg.TEST.COMPUTE_CMAT:
|
||||
cmat = confusion_matrix(
|
||||
self._y_true, self._y_pred, normalize="true"
|
||||
)
|
||||
save_path = osp.join(self.cfg.OUTPUT_DIR, "cmat.pt")
|
||||
torch.save(cmat, save_path)
|
||||
print(f"Confusion matrix is saved to {save_path}")
|
||||
|
||||
return results
|
||||
265
trainers/util.py
Normal file
265
trainers/util.py
Normal file
@@ -0,0 +1,265 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
import cv2
|
||||
from PIL import Image
|
||||
import os
|
||||
|
||||
BACKGROUND_CATEGORY = ['ground','land','grass','tree','building','wall','sky','lake','water','river','sea','railway','railroad','keyboard','helmet',
|
||||
'cloud','house','mountain','ocean','road','rock','street','valley','bridge','sign',
|
||||
]
|
||||
|
||||
class GradCAM(object):
|
||||
def __init__(self,model_dict):
|
||||
layer_name = model_dict['layer_name']
|
||||
self.model_arch = model_dict['arch']
|
||||
|
||||
self.gradient = dict()
|
||||
self.activation = dict()
|
||||
|
||||
self.gradient_t = dict()
|
||||
self.activation_t = dict()
|
||||
|
||||
def backward_hook(module,grad_input,grad_output):
|
||||
self.gradient['value'] = grad_output[0]
|
||||
return None
|
||||
|
||||
def forward_hook(module,input,output):
|
||||
self.activation['value'] = output
|
||||
return None
|
||||
|
||||
def backward_hook_t(module,grad_input,grad_output):
|
||||
self.gradient_t['value'] = grad_output[0]
|
||||
return None
|
||||
|
||||
def forward_hook_t(module,input,output):
|
||||
self.activation_t['value'] = output
|
||||
return None
|
||||
|
||||
target_layer = self.model_arch.image_encoder.transformer.resblocks[-1].ln_1
|
||||
# target_layer_t = self.model_arch.image_encoder.transformer.resblocks[-2].mlp.c_proj
|
||||
target_layer.register_forward_hook(forward_hook)
|
||||
target_layer.register_backward_hook(backward_hook)
|
||||
|
||||
# target_layer_t.register_forward_hook(forward_hook_t)
|
||||
# target_layer_t.register_backward_hook(backward_hook_t)
|
||||
|
||||
def forward(self,input,labels,cfg=None,retain_graph=False,split=None,attn_mask=False):
|
||||
|
||||
|
||||
|
||||
|
||||
b,c,h,w = input.shape
|
||||
patch_num,ori_size = self.model_arch.image_encoder.patch_num, self.model_arch.image_encoder.input_resolution
|
||||
|
||||
if attn_mask:
|
||||
logit,mask = self.model_arch.forward_test(input,labels,cfg=cfg,attn_mask=attn_mask)
|
||||
cls_mask = mask[:,1:-self.model_arch.prompt_learner.n_ctx,:1].reshape(b,-1,patch_num,patch_num) #+ mask[:,1:-self.model_arch.prompt_learner.n_ctx,:1].permute(0,2,1)
|
||||
aff = mask[:,1:-self.model_arch.prompt_learner.n_ctx, 1:-self.model_arch.prompt_learner.n_ctx]
|
||||
# aff = (aff + aff.permute(0,2,1)) / 2
|
||||
aff = aff / (aff.sum(dim=1,keepdim=True) + 1e-6)
|
||||
# aff = aff / (aff.sum(dim=1,keepdim=True) + 1e-6)
|
||||
|
||||
|
||||
# aff = (aff + aff.permute(0,2,1)) / 2
|
||||
|
||||
# aff = torch.bmm(aff,aff)
|
||||
|
||||
# aff = F.softmax(aff,dim=1)
|
||||
# cls_mask = torch.bmm(cls_mask, aff).reshape(b,-1,patch_num,patch_num)
|
||||
|
||||
|
||||
# cls_mask = mask[:,1:-self.model_arch.prompt_learner.n_ctx,:1].permute(0,2,1).reshape(b,-1,patch_num,patch_num)
|
||||
# # cls_mask = mask[:,-self.model_arch.prompt_learner.n_ctx:,1:-self.model_arch.prompt_learner.n_ctx].reshape(b,-1,patch_num,patch_num).mean(dim=1,keepdim=True)
|
||||
# final_cls_mask = F.upsample(cls_mask, size=(ori_size, ori_size), mode='bilinear',
|
||||
# align_corners=True)
|
||||
# final_cls_feature_min, final_cls_feature_max = final_cls_mask.min(), final_cls_mask.max()
|
||||
# final_cls_mask = (final_cls_mask - final_cls_feature_min) / (
|
||||
# final_cls_feature_max - final_cls_feature_min + 1e-6)
|
||||
# final_cls_mask = final_cls_mask / (final_cls_mask.max() + 1e-6)
|
||||
|
||||
else:
|
||||
logit = self.model_arch.forward_test(input,labels,cfg=cfg)
|
||||
pred_label = torch.argmax(logit[:,:-len(BACKGROUND_CATEGORY)])
|
||||
sign = pred_label == labels
|
||||
# if (split == 'true' and sign == False) or (split == 'wrong' and sign == True):
|
||||
# print(f'Ignore the not {split} sample')
|
||||
# return None
|
||||
|
||||
# if attn_mask:
|
||||
# return final_cls_mask
|
||||
pred = logit[:,:-len(BACKGROUND_CATEGORY)].argmax(dim=-1)
|
||||
background_logit = logit[:,-len(BACKGROUND_CATEGORY):]
|
||||
one_hot_labels = F.one_hot(labels, num_classes=logit.shape[1]-len(BACKGROUND_CATEGORY)).to(torch.float16)
|
||||
|
||||
loss = (F.softmax(logit[:,:-len(BACKGROUND_CATEGORY)])*one_hot_labels).mean() #+ background_logit.mean() #(logit[:,:-len(BACKGROUND_CATEGORY)]*one_hot_labels).mean() #F.cross_entropy(logit.requires_grad_(True), labels)
|
||||
|
||||
# score = logit[:,labels]
|
||||
self.model_arch.zero_grad()
|
||||
loss.backward(retain_graph=retain_graph)
|
||||
gradients = self.gradient['value']
|
||||
activations = self.activation['value']
|
||||
|
||||
# gradients_t = self.gradient_t['value']
|
||||
# activations_t = self.activation_t['value']
|
||||
|
||||
visual_feature = activations[1:-self.model_arch.prompt_learner.n_ctx]
|
||||
# visual_feature = activations[1:-self.model_arch.prompt_learner.n_ctx]
|
||||
# cls = gradients[1:-self.model_arch.prompt_learner.n_ctx,:,:]
|
||||
# cls_token_gradient = gradients[-self.model_arch.prompt_learner.n_ctx:,:,:].mean(dim=0,keepdim=True)#gradients[:1,:,:]
|
||||
cls_token_gradient,prompt_gradient = gradients[:1,:,:], gradients[-self.model_arch.prompt_learner.n_ctx:,:,:].mean(keepdim=True,dim=0)
|
||||
visual_gradient = torch.mean(gradients[1:-self.model_arch.prompt_learner.n_ctx],keepdim=True,dim=0)
|
||||
|
||||
lam = 0.5
|
||||
# cls_token_gradient = cls_token_gradient / (cls_token_gradient.max(dim=-1,keepdim=True)[0] + 1e-6)
|
||||
# prompt_gradient = prompt_gradient / (prompt_gradient.max(dim=-1,keepdim=True)[0] + 1e-6)
|
||||
|
||||
# sim = F.cosine_similarity(prompt_gradient.mean(dim=0,keepdim=True),cls_token_gradient,dim=-1)
|
||||
# print(sim)
|
||||
# cls_token_gradient = gradients[-self.model_arch.prompt_learner.n_ctx:,:,:].max(dim=0,keepdim=True)[0]#gradients[:1,:,:]
|
||||
|
||||
# token_gradient = cls_token_gradient
|
||||
# token_gradient = cls_token_gradient#*(prompt_gradient.mean(dim=0,keepdim=True))
|
||||
# propmt_mean = prompt_gradient.mean(dim=0,keepdim=True)
|
||||
token_gradient = visual_gradient
|
||||
|
||||
final_visual_feature = torch.bmm(visual_feature.permute(1,0,2),token_gradient.permute(1,2,0))
|
||||
final_visual_feature = F.relu(final_visual_feature).permute(0,2,1)
|
||||
# if attn_mask:
|
||||
# final_visual_feature = torch.bmm(final_visual_feature, aff)
|
||||
|
||||
final_visual_feature = final_visual_feature.reshape(final_visual_feature.shape[0],1, patch_num, patch_num)
|
||||
final_visual_feature = F.upsample(final_visual_feature,size=(ori_size,ori_size),mode='bilinear',align_corners=True)
|
||||
|
||||
# saliency_map = final_visual_feature / final_visual_feature.max()
|
||||
final_visual_feature_min, final_visual_feature_max = final_visual_feature.min(), final_visual_feature.max()
|
||||
saliency_map = final_visual_feature / (final_visual_feature_max + 1e-6)#(final_visual_feature-final_visual_feature_min) / (final_visual_feature_max - final_visual_feature_min + 1e-6)
|
||||
|
||||
threshold = 0.5
|
||||
# saliency_map[saliency_map >= threshold] = 1
|
||||
saliency_map[saliency_map < threshold] = 0
|
||||
|
||||
return saliency_map
|
||||
|
||||
|
||||
def forward_train(self,input,labels,cfg=None,retain_graph=False,split=None,attn_mask=False):
|
||||
|
||||
|
||||
|
||||
|
||||
b,c,h,w = input.shape
|
||||
patch_num,ori_size = self.model_arch.image_encoder.patch_num, self.model_arch.image_encoder.input_resolution
|
||||
|
||||
if attn_mask:
|
||||
logit,mask = self.model_arch.forward_test(input,labels,cfg=cfg,attn_mask=attn_mask)
|
||||
cls_mask = mask[:,1:-self.model_arch.prompt_learner.n_ctx,:1].reshape(b,-1,patch_num,patch_num) #+ mask[:,1:-self.model_arch.prompt_learner.n_ctx,:1].permute(0,2,1)
|
||||
aff = mask[:,1:-self.model_arch.prompt_learner.n_ctx, 1:-self.model_arch.prompt_learner.n_ctx]
|
||||
# aff = (aff + aff.permute(0,2,1)) / 2
|
||||
aff = aff / (aff.sum(dim=1,keepdim=True) + 1e-6)
|
||||
# aff = aff / (aff.sum(dim=1,keepdim=True) + 1e-6)
|
||||
|
||||
|
||||
# aff = (aff + aff.permute(0,2,1)) / 2
|
||||
|
||||
# aff = torch.bmm(aff,aff)
|
||||
|
||||
# aff = F.softmax(aff,dim=1)
|
||||
# cls_mask = torch.bmm(cls_mask, aff).reshape(b,-1,patch_num,patch_num)
|
||||
|
||||
|
||||
# cls_mask = mask[:,1:-self.model_arch.prompt_learner.n_ctx,:1].permute(0,2,1).reshape(b,-1,patch_num,patch_num)
|
||||
# # cls_mask = mask[:,-self.model_arch.prompt_learner.n_ctx:,1:-self.model_arch.prompt_learner.n_ctx].reshape(b,-1,patch_num,patch_num).mean(dim=1,keepdim=True)
|
||||
# final_cls_mask = F.upsample(cls_mask, size=(ori_size, ori_size), mode='bilinear',
|
||||
# align_corners=True)
|
||||
# final_cls_feature_min, final_cls_feature_max = final_cls_mask.min(), final_cls_mask.max()
|
||||
# final_cls_mask = (final_cls_mask - final_cls_feature_min) / (
|
||||
# final_cls_feature_max - final_cls_feature_min + 1e-6)
|
||||
# final_cls_mask = final_cls_mask / (final_cls_mask.max() + 1e-6)
|
||||
|
||||
else:
|
||||
logit = self.model_arch.forward_test(input,labels,cfg=cfg)
|
||||
pred_label = torch.argmax(logit)
|
||||
sign = pred_label == labels
|
||||
# if (split == 'true' and sign == False) or (split == 'wrong' and sign == True):
|
||||
# print(f'Ignore the not {split} sample')
|
||||
# return None
|
||||
|
||||
# if attn_mask:
|
||||
# return final_cls_mask
|
||||
# pred = logit[:,-len(BACKGROUND_CATEGORY):].argmax(dim=-1)
|
||||
# background_logit = logit[:,-len(BACKGROUND_CATEGORY):]
|
||||
one_hot_labels = F.one_hot(labels, num_classes=logit.shape[1]).to(torch.float16)
|
||||
loss = (logit*one_hot_labels).mean() #+ background_logit.mean() #(logit[:,:-len(BACKGROUND_CATEGORY)]*one_hot_labels).mean() #F.cross_entropy(logit.requires_grad_(True), labels)
|
||||
# score = logit[:,labels]
|
||||
self.model_arch.zero_grad()
|
||||
loss.backward(retain_graph=retain_graph)
|
||||
gradients = self.gradient['value']
|
||||
activations = self.activation['value']
|
||||
|
||||
# gradients_t = self.gradient_t['value']
|
||||
# activations_t = self.activation_t['value']
|
||||
|
||||
visual_feature = activations[1:-self.model_arch.prompt_learner.n_ctx]
|
||||
# visual_feature = activations[1:-self.model_arch.prompt_learner.n_ctx]
|
||||
# cls = gradients[1:-self.model_arch.prompt_learner.n_ctx,:,:]
|
||||
# cls_token_gradient = gradients[-self.model_arch.prompt_learner.n_ctx:,:,:].mean(dim=0,keepdim=True)#gradients[:1,:,:]
|
||||
cls_token_gradient,prompt_gradient = gradients[:1,:,:], gradients[-self.model_arch.prompt_learner.n_ctx:,:,:].mean(keepdim=True,dim=0)
|
||||
visual_gradient = torch.mean(gradients[1:-self.model_arch.prompt_learner.n_ctx],keepdim=True,dim=0)
|
||||
|
||||
lam = 0.5
|
||||
# cls_token_gradient = cls_token_gradient / (cls_token_gradient.max(dim=-1,keepdim=True)[0] + 1e-6)
|
||||
# prompt_gradient = prompt_gradient / (prompt_gradient.max(dim=-1,keepdim=True)[0] + 1e-6)
|
||||
|
||||
# sim = F.cosine_similarity(prompt_gradient.mean(dim=0,keepdim=True),cls_token_gradient,dim=-1)
|
||||
# print(sim)
|
||||
# cls_token_gradient = gradients[-self.model_arch.prompt_learner.n_ctx:,:,:].max(dim=0,keepdim=True)[0]#gradients[:1,:,:]
|
||||
|
||||
# token_gradient = cls_token_gradient
|
||||
# token_gradient = cls_token_gradient#*(prompt_gradient.mean(dim=0,keepdim=True))
|
||||
# propmt_mean = prompt_gradient.mean(dim=0,keepdim=True)
|
||||
token_gradient = visual_gradient
|
||||
|
||||
final_visual_feature = torch.bmm(visual_feature.permute(1,0,2),token_gradient.permute(1,2,0))
|
||||
final_visual_feature = F.relu(final_visual_feature).permute(0,2,1)
|
||||
# if attn_mask:
|
||||
# final_visual_feature = torch.bmm(final_visual_feature, aff)
|
||||
|
||||
final_visual_feature = final_visual_feature.reshape(final_visual_feature.shape[0],1, patch_num, patch_num)
|
||||
final_visual_feature = F.upsample(final_visual_feature,size=(ori_size,ori_size),mode='bilinear',align_corners=True)
|
||||
|
||||
# saliency_map = final_visual_feature / final_visual_feature.max()
|
||||
final_visual_feature_min, final_visual_feature_max = final_visual_feature.min(), final_visual_feature.max()
|
||||
saliency_map = final_visual_feature / (final_visual_feature_max + 1e-6)#(final_visual_feature-final_visual_feature_min) / (final_visual_feature_max - final_visual_feature_min + 1e-6)
|
||||
|
||||
threshold = 0.5
|
||||
saliency_map[saliency_map >= threshold] = 1
|
||||
saliency_map[saliency_map < threshold] = 0
|
||||
|
||||
return saliency_map
|
||||
|
||||
|
||||
def show_cam(self,img,mask,save_path=None):
|
||||
|
||||
heat_map = cv2.applyColorMap(np.uint8(255*mask.squeeze()), cv2.COLORMAP_JET)
|
||||
heatmap = torch.from_numpy(heat_map).permute(2,0,1).float().div(255)
|
||||
b,g,r = heatmap.split(1)
|
||||
heatmap = torch.cat([r,g,b])
|
||||
rate = 0.5
|
||||
res = rate*heatmap + (1-rate)*img
|
||||
res = res.div(res.max()).squeeze()
|
||||
res = np.transpose(np.uint8(255*res),(1,2,0))
|
||||
|
||||
pil_image = Image.fromarray(res)
|
||||
# pil_image.save('test1.jpg')
|
||||
pil_image.save(save_path)
|
||||
return pil_image
|
||||
|
||||
|
||||
|
||||
def denorm(img,mean,std):
|
||||
mean,std = np.array(mean),np.array(std)
|
||||
img = img*std[:, None, None] + mean[:, None, None]
|
||||
# img = np.clip(img*255, 0, 255) #.clamp(0,255)
|
||||
# img = img / 255
|
||||
return img
|
||||
|
||||
239
trainers/vpt.py
Normal file
239
trainers/vpt.py
Normal file
@@ -0,0 +1,239 @@
|
||||
import os.path as osp
|
||||
from collections import OrderedDict
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from torch.cuda.amp import GradScaler, autocast
|
||||
|
||||
from dassl.engine import TRAINER_REGISTRY, TrainerX
|
||||
from dassl.metrics import compute_accuracy
|
||||
from dassl.utils import load_pretrained_weights, load_checkpoint
|
||||
from dassl.optim import build_optimizer, build_lr_scheduler
|
||||
|
||||
from clip import clip
|
||||
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
||||
|
||||
_tokenizer = _Tokenizer()
|
||||
|
||||
|
||||
def load_clip_to_cpu(cfg):
|
||||
backbone_name = cfg.MODEL.BACKBONE.NAME
|
||||
url = clip._MODELS[backbone_name]
|
||||
model_path = clip._download(url)
|
||||
|
||||
try:
|
||||
# loading JIT archive
|
||||
model = torch.jit.load(model_path, map_location="cpu").eval()
|
||||
state_dict = None
|
||||
|
||||
except RuntimeError:
|
||||
state_dict = torch.load(model_path, map_location="cpu")
|
||||
design_details = { "trainer": "VPT",
|
||||
"vision_depth": cfg.TRAINER.VPT.PROMPT_DEPTH_VISION,
|
||||
"vision_ctx": cfg.TRAINER.VPT.N_CTX_VISION,
|
||||
"language_depth": 0,
|
||||
"language_ctx": 0}
|
||||
assert cfg.TRAINER.VPT.PROMPT_DEPTH_VISION >= 1, "For Vision Prompting, PROMPT_DEPTH_VISION should be >= 1"
|
||||
model = clip.build_model(state_dict or model.state_dict(), design_details)
|
||||
|
||||
return model.float()
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self, clip_model):
|
||||
super().__init__()
|
||||
self.transformer = clip_model.transformer
|
||||
self.positional_embedding = clip_model.positional_embedding
|
||||
self.ln_final = clip_model.ln_final
|
||||
self.text_projection = clip_model.text_projection
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, prompts, tokenized_prompts):
|
||||
x = prompts + self.positional_embedding.type(self.dtype)
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.transformer(x)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.ln_final(x).type(self.dtype)
|
||||
|
||||
# x.shape = [batch_size, n_ctx, transformer.width]
|
||||
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||||
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class FixedEmbeddings():
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
clip_imsize = clip_model.visual.input_resolution
|
||||
cfg_imsize = cfg.INPUT.SIZE[0]
|
||||
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
|
||||
|
||||
prompt_prefix = "a photo of a"
|
||||
print('Vision Prompting Design')
|
||||
print(f'Initial context: "{prompt_prefix}"')
|
||||
print(f"Number of context words (tokens) for Vision prompting: {cfg.TRAINER.VPT.N_CTX_VISION}")
|
||||
print(f"Using fixed hand crated prompts")
|
||||
|
||||
classnames = [name.replace("_", " ") for name in classnames]
|
||||
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
||||
|
||||
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts])
|
||||
with torch.no_grad():
|
||||
text_features = clip_model.encode_text(tokenized_prompts)
|
||||
|
||||
self.fixed_embeddings = text_features
|
||||
|
||||
def return_fixed_embeddings(self):
|
||||
return self.fixed_embeddings
|
||||
|
||||
|
||||
class CustomCLIP(nn.Module):
|
||||
def __init__(self, cfg, classnames, clip_model):
|
||||
super().__init__()
|
||||
self.embeddings = FixedEmbeddings(cfg, classnames, clip_model)
|
||||
self.image_encoder = clip_model.visual
|
||||
self.text_encoder = TextEncoder(clip_model)
|
||||
self.logit_scale = clip_model.logit_scale
|
||||
self.dtype = clip_model.dtype
|
||||
|
||||
def forward(self, image, label=None, training=False):
|
||||
logit_scale = self.logit_scale.exp()
|
||||
|
||||
text_features = self.embeddings.return_fixed_embeddings().cuda()
|
||||
image_features = self.image_encoder(image.type(self.dtype))
|
||||
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
logits = logit_scale * image_features @ text_features.t()
|
||||
|
||||
if training:
|
||||
return F.cross_entropy(logits, label)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class VPT(TrainerX):
|
||||
def check_cfg(self, cfg):
|
||||
assert cfg.TRAINER.VPT.PREC in ["fp16", "fp32", "amp"]
|
||||
|
||||
def build_model(self):
|
||||
cfg = self.cfg
|
||||
classnames = self.dm.dataset.classnames
|
||||
|
||||
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
|
||||
clip_model = load_clip_to_cpu(cfg)
|
||||
|
||||
if cfg.TRAINER.VPT.PREC == "fp32" or cfg.TRAINER.VPT.PREC == "amp":
|
||||
# CLIP's default precision is fp16
|
||||
clip_model.float()
|
||||
|
||||
print("Building custom CLIP")
|
||||
self.model = CustomCLIP(cfg, classnames, clip_model)
|
||||
|
||||
print("Turning off gradients in both the image and the text encoder")
|
||||
name_to_update = "prompt_learner"
|
||||
|
||||
for name, param in self.model.named_parameters():
|
||||
if name_to_update not in name:
|
||||
# Make sure that VPT prompts are updated
|
||||
if "VPT" in name:
|
||||
param.requires_grad_(True)
|
||||
else:
|
||||
param.requires_grad_(False)
|
||||
|
||||
# Double check
|
||||
enabled = set()
|
||||
for name, param in self.model.named_parameters():
|
||||
if param.requires_grad:
|
||||
enabled.add(name)
|
||||
print(f"Parameters to be updated: {enabled}")
|
||||
|
||||
if cfg.MODEL.INIT_WEIGHTS:
|
||||
load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS)
|
||||
|
||||
self.model.to(self.device)
|
||||
# NOTE: only give prompt_learner to the optimizer
|
||||
self.optim = build_optimizer(self.model, cfg.OPTIM)
|
||||
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
|
||||
self.register_model("prompt_learner", self.model, self.optim, self.sched)
|
||||
|
||||
self.scaler = GradScaler() if cfg.TRAINER.VPT.PREC == "amp" else None
|
||||
|
||||
# Note that multi-gpu training could be slow because CLIP's size is
|
||||
# big, which slows down the copy operation in DataParallel
|
||||
device_count = torch.cuda.device_count()
|
||||
if device_count > 1:
|
||||
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
|
||||
self.model = nn.DataParallel(self.model)
|
||||
|
||||
def forward_backward(self, batch):
|
||||
image, label = self.parse_batch_train(batch)
|
||||
|
||||
model = self.model
|
||||
optim = self.optim
|
||||
scaler = self.scaler
|
||||
|
||||
prec = self.cfg.TRAINER.VPT.PREC
|
||||
if prec == "amp":
|
||||
with autocast():
|
||||
loss = model(image, label)
|
||||
optim.zero_grad()
|
||||
scaler.scale(loss).backward()
|
||||
scaler.step(optim)
|
||||
scaler.update()
|
||||
else:
|
||||
loss = model(image, label, training=True)
|
||||
optim.zero_grad()
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
loss_summary = {"loss": loss.item()}
|
||||
|
||||
if (self.batch_idx + 1) == self.num_batches:
|
||||
self.update_lr()
|
||||
|
||||
return loss_summary
|
||||
|
||||
def parse_batch_train(self, batch):
|
||||
input = batch["img"]
|
||||
label = batch["label"]
|
||||
input = input.to(self.device)
|
||||
label = label.to(self.device)
|
||||
return input, label
|
||||
|
||||
def load_model(self, directory, epoch=None):
|
||||
if not directory:
|
||||
print("Note that load_model() is skipped as no pretrained model is given")
|
||||
return
|
||||
|
||||
names = self.get_model_names()
|
||||
|
||||
# By default, the best model is loaded
|
||||
model_file = "model-best.pth.tar"
|
||||
|
||||
if epoch is not None:
|
||||
model_file = "model.pth.tar-" + str(epoch)
|
||||
|
||||
for name in names:
|
||||
model_path = osp.join(directory, name, model_file)
|
||||
|
||||
if not osp.exists(model_path):
|
||||
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
|
||||
|
||||
checkpoint = load_checkpoint(model_path)
|
||||
state_dict = checkpoint["state_dict"]
|
||||
epoch = checkpoint["epoch"]
|
||||
|
||||
# Ignore fixed token vectors
|
||||
if "prompt_learner.token_prefix" in state_dict:
|
||||
del state_dict["prompt_learner.token_prefix"]
|
||||
|
||||
if "prompt_learner.token_suffix" in state_dict:
|
||||
del state_dict["prompt_learner.token_suffix"]
|
||||
|
||||
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
|
||||
# set strict=False
|
||||
self._models[name].load_state_dict(state_dict, strict=False)
|
||||
99
trainers/zsclip.py
Normal file
99
trainers/zsclip.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from dassl.engine import TRAINER_REGISTRY, TrainerX
|
||||
from dassl.optim import build_optimizer, build_lr_scheduler
|
||||
|
||||
from clip import clip
|
||||
from clip.model import convert_weights
|
||||
|
||||
from .coop import load_clip_to_cpu
|
||||
from .imagenet_templates import IMAGENET_TEMPLATES, IMAGENET_TEMPLATES_SELECT
|
||||
|
||||
CUSTOM_TEMPLATES = {
|
||||
"OxfordPets": "a photo of a {}, a type of pet.",
|
||||
"OxfordFlowers": "a photo of a {}, a type of flower.",
|
||||
"FGVCAircraft": "a photo of a {}, a type of aircraft.",
|
||||
"DescribableTextures": "{} texture.",
|
||||
"EuroSAT": "a centered satellite photo of {}.",
|
||||
"StanfordCars": "a photo of a {}.",
|
||||
"Food101": "a photo of {}, a type of food.",
|
||||
"SUN397": "a photo of a {}.",
|
||||
"Caltech101": "a photo of a {}.",
|
||||
"UCF101": "a photo of a person doing {}.",
|
||||
"ImageNet": "a photo of a {}.",
|
||||
"ImageNetSketch": "a photo of a {}.",
|
||||
"ImageNetV2": "a photo of a {}.",
|
||||
"ImageNetA": "a photo of a {}.",
|
||||
"ImageNetR": "a photo of a {}.",
|
||||
}
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class ZeroshotCLIP(TrainerX):
|
||||
def build_model(self):
|
||||
cfg = self.cfg
|
||||
classnames = self.dm.dataset.classnames
|
||||
|
||||
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
|
||||
clip_model = load_clip_to_cpu(cfg)
|
||||
clip_model.to(self.device)
|
||||
|
||||
temp = CUSTOM_TEMPLATES[cfg.DATASET.NAME]
|
||||
prompts = [temp.format(c.replace("_", " ")) for c in classnames]
|
||||
print(f"Prompts: {prompts}")
|
||||
prompts = torch.cat([clip.tokenize(p) for p in prompts])
|
||||
prompts = prompts.to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
text_features = clip_model.encode_text(prompts)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
self.text_features = text_features
|
||||
self.clip_model = clip_model
|
||||
|
||||
def model_inference(self, image):
|
||||
image_features = self.clip_model.encode_image(image)
|
||||
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
||||
logit_scale = self.clip_model.logit_scale.exp()
|
||||
logits = logit_scale * image_features @ self.text_features.t()
|
||||
return logits
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class ZeroshotCLIP2(ZeroshotCLIP):
|
||||
"""Prompt ensembling."""
|
||||
|
||||
# templates = IMAGENET_TEMPLATES
|
||||
templates = IMAGENET_TEMPLATES_SELECT
|
||||
|
||||
def build_model(self):
|
||||
cfg = self.cfg
|
||||
classnames = self.dm.dataset.classnames
|
||||
|
||||
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
|
||||
clip_model = load_clip_to_cpu(cfg)
|
||||
clip_model.to(self.device)
|
||||
|
||||
for params in clip_model.parameters():
|
||||
params.requires_grad_(False)
|
||||
|
||||
# add custom-made prompt
|
||||
if cfg.DATASET.NAME != "ImageNet":
|
||||
self.templates += [CUSTOM_TEMPLATES[cfg.DATASET.NAME]]
|
||||
|
||||
num_temp = len(self.templates)
|
||||
print(f"Prompt ensembling (n={num_temp})")
|
||||
|
||||
mean_text_features = 0
|
||||
for i, temp in enumerate(self.templates):
|
||||
prompts = [temp.format(c.replace("_", " ")) for c in classnames]
|
||||
prompts = torch.cat([clip.tokenize(p) for p in prompts]).to(self.device)
|
||||
text_features = clip_model.encode_text(prompts)
|
||||
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
||||
mean_text_features = mean_text_features + text_features
|
||||
mean_text_features = mean_text_features / num_temp
|
||||
mean_text_features = mean_text_features / mean_text_features.norm(dim=-1, keepdim=True)
|
||||
|
||||
self.text_features = mean_text_features
|
||||
self.clip_model = clip_model
|
||||
Reference in New Issue
Block a user