Files
DAPT/deepcore/datasets/imagenet.py
2025-10-07 22:42:55 +08:00

28 lines
995 B
Python

from torchvision import datasets, transforms
from torch import tensor, long
def ImageNet(data_path):
channel = 3
im_size = (224, 224)
num_classes = 1000
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
normalize = transforms.Normalize(mean, std)
dst_train = datasets.ImageNet(data_path, split="train", transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
dst_test = datasets.ImageNet(data_path, split="val", transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
class_names = dst_train.classes
dst_train.targets = tensor(dst_train.targets, dtype=long)
dst_test.targets = tensor(dst_test.targets, dtype=long)
return channel, im_size, num_classes, class_names, mean, std, dst_train, dst_test