Files
DAPT/deepcore/methods/kcentergreedy.py
2025-10-07 22:42:55 +08:00

183 lines
8.4 KiB
Python

from .earlytrain import EarlyTrain
import torch
import numpy as np
from .methods_utils import euclidean_dist
from ..nets.nets_utils import MyDataParallel
def k_center_greedy(matrix, budget: int, metric, device, random_seed=None, index=None, already_selected=None,
print_freq: int = 20):
if type(matrix) == torch.Tensor:
assert matrix.dim() == 2
elif type(matrix) == np.ndarray:
assert matrix.ndim == 2
matrix = torch.from_numpy(matrix).requires_grad_(False).to(device)
sample_num = matrix.shape[0]
assert sample_num >= 1
if budget < 0:
raise ValueError("Illegal budget size.")
elif budget > sample_num:
budget = sample_num
if index is not None:
assert matrix.shape[0] == len(index)
else:
index = np.arange(sample_num)
assert callable(metric)
already_selected = np.array(already_selected)
with torch.no_grad():
np.random.seed(random_seed)
if already_selected.__len__() == 0:
select_result = np.zeros(sample_num, dtype=bool)
# Randomly select one initial point.
already_selected = [np.random.randint(0, sample_num)]
budget -= 1
select_result[already_selected] = True
else:
select_result = np.in1d(index, already_selected)
num_of_already_selected = np.sum(select_result)
# Initialize a (num_of_already_selected+budget-1)*sample_num matrix storing distances of pool points from
# each clustering center.
dis_matrix = -1 * torch.ones([num_of_already_selected + budget - 1, sample_num], requires_grad=False).to(device)
dis_matrix[:num_of_already_selected, ~select_result] = metric(matrix[select_result], matrix[~select_result])
mins = torch.min(dis_matrix[:num_of_already_selected, :], dim=0).values
for i in range(budget):
if i % print_freq == 0:
print("| Selecting [%3d/%3d]" % (i + 1, budget))
p = torch.argmax(mins).item()
select_result[p] = True
if i == budget - 1:
break
mins[p] = -1
dis_matrix[num_of_already_selected + i, ~select_result] = metric(matrix[[p]], matrix[~select_result])
mins = torch.min(mins, dis_matrix[num_of_already_selected + i])
return index[select_result]
class kCenterGreedy(EarlyTrain):
def __init__(self, dst_train, args, fraction=0.5, random_seed=None, epochs=0,
specific_model="ResNet18", balance: bool = False, already_selected=[], metric="euclidean",
torchvision_pretrain: bool = True, **kwargs):
super().__init__(dst_train, args, fraction, random_seed, epochs=epochs, specific_model=specific_model,
torchvision_pretrain=torchvision_pretrain, **kwargs)
if already_selected.__len__() != 0:
if min(already_selected) < 0 or max(already_selected) >= self.n_train:
raise ValueError("List of already selected points out of the boundary.")
self.already_selected = np.array(already_selected)
self.min_distances = None
if metric == "euclidean":
self.metric = euclidean_dist
elif callable(metric):
self.metric = metric
else:
self.metric = euclidean_dist
self.run = lambda : self.finish_run()
def _construct_matrix(index=None):
data_loader = torch.utils.data.DataLoader(
self.dst_train if index is None else torch.utils.data.Subset(self.dst_train, index),
batch_size=self.n_train if index is None else len(index),
num_workers=self.args.workers)
inputs, _ = next(iter(data_loader))
return inputs.flatten(1).requires_grad_(False).to(self.args.device)
self.construct_matrix = _construct_matrix
self.balance = balance
def num_classes_mismatch(self):
raise ValueError("num_classes of pretrain dataset does not match that of the training dataset.")
def while_update(self, outputs, loss, targets, epoch, batch_idx, batch_size):
if batch_idx % self.args.print_freq == 0:
print('| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tLoss: %.4f' % (
epoch, self.epochs, batch_idx + 1, (self.n_pretrain_size // batch_size) + 1, loss.item()))
def old_construct_matrix(self, index=None):
self.model.eval()
self.model.no_grad = True
with torch.no_grad():
with self.model.embedding_recorder:
sample_num = self.n_train if index is None else len(index)
matrix = torch.zeros([sample_num, self.emb_dim], requires_grad=False).to(self.args.device)
data_loader = torch.utils.data.DataLoader(self.dst_train if index is None else
torch.utils.data.Subset(self.dst_train, index),
batch_size=self.args.selection_batch,
num_workers=self.args.workers)
for i, (inputs, _) in enumerate(data_loader):
self.model(inputs.to(self.args.device))
matrix[i * self.args.selection_batch:min((i + 1) * self.args.selection_batch,
sample_num)] = self.model.embedding_recorder.embedding
self.model.no_grad = False
return matrix
def construct_matrix(self, index=None):
self.model.eval()
self.model.no_grad = True
with torch.no_grad():
with self.model.embedding_recorder:
sample_num = self.n_train if index is None else len(index)
matrix = []
data_loader = torch.utils.data.DataLoader(self.dst_train if index is None else
torch.utils.data.Subset(self.dst_train, index),
batch_size=self.args.selection_batch,
num_workers=self.args.workers)
for i, (inputs, _) in enumerate(data_loader):
self.model(inputs.to(self.args.device))
matrix.append(self.model.embedding_recorder.embedding)
self.model.no_grad = False
return torch.cat(matrix, dim=0)
def before_run(self):
self.emb_dim = self.model.get_last_layer().in_features
def finish_run(self):
if isinstance(self.model, MyDataParallel):
self.model = self.model.module
def select(self, **kwargs):
self.run()
if self.balance:
selection_result = np.array([], dtype=np.int32)
for c in range(self.args.num_classes):
class_index = np.arange(self.n_train)[self.dst_train.targets == c]
selection_result = np.append(selection_result, k_center_greedy(self.construct_matrix(class_index),
budget=round(
self.fraction * len(class_index)),
metric=self.metric,
device=self.args.device,
random_seed=self.random_seed,
index=class_index,
already_selected=self.already_selected[
np.in1d(self.already_selected,
class_index)],
print_freq=self.args.print_freq))
else:
matrix = self.construct_matrix()
del self.model_optimizer
del self.model
selection_result = k_center_greedy(matrix, budget=self.coreset_size,
metric=self.metric, device=self.args.device,
random_seed=self.random_seed,
already_selected=self.already_selected, print_freq=self.args.print_freq)
return {"indices": selection_result}