Files
DAPT/deepcore/methods/uncertainty.py
2025-10-07 22:42:55 +08:00

121 lines
5.5 KiB
Python

from .earlytrain import EarlyTrain
import torch
import numpy as np
from datasets.data_manager import select_dm_loader
import time
class Uncertainty(EarlyTrain):
def __init__(self, dst_train, args,fraction=0.5, random_seed=None, epochs=200, selection_method="Margin",
specific_model=None, balance=False, **kwargs):
super().__init__(dst_train, args, fraction, random_seed, epochs, specific_model, **kwargs)
selection_choices = ["LeastConfidence",
"Entropy",
"Margin"]
if selection_method not in selection_choices:
raise NotImplementedError("Selection algorithm unavailable.")
self.selection_method = selection_method
self.epochs = epochs
self.balance = balance
def before_train(self):
pass
def after_loss(self, outputs, loss, targets, batch_inds, epoch):
pass
def after_epoch(self):
pass
def before_run(self):
pass
def num_classes_mismatch(self):
raise ValueError("num_classes of pretrain dataset does not match that of the training dataset.")
def while_update(self, outputs, loss, targets, epoch, batch_idx, batch_size):
pass
def finish_run(self):
if self.balance:
selection_result = np.array([], dtype=np.int64)
scores = []
for c in range(self.num_classes):
print(f"Balance Processing on the train set class {c}")
class_index = np.arange(self.n_train)[self.dst_train_label == c]
scores.append(self.rank_uncertainty_clip(class_index))
selection_result = np.append(selection_result, class_index[np.argsort(scores[-1])[
:round(len(class_index) * self.fraction)]])
else:
print(f"Imbalance Processing on the train set class")
scores = self.rank_uncertainty_clip()
selection_result = np.argsort(scores)[::-1][:self.coreset_size]
return {"indices": selection_result, "scores": scores}
def rank_uncertainty(self,index=None):
self.specific_model.eval()
with torch.no_grad():
train_loader = torch.utils.data.DataLoader(
self.dst_train if index is None else torch.utils.data.Subset(self.dst_train, index),
batch_size=self.args.selection_batch,
num_workers=self.args.workers)
scores = np.array([])
batch_num = len(train_loader)
for i, (input, _) in enumerate(train_loader):
if i % self.args.print_freq == 0:
print("| Selecting for batch [%3d/%3d]" % (i + 1, batch_num))
if self.selection_method == "LeastConfidence":
scores = np.append(scores, self.model(input.to(self.args.device)).max(axis=1).values.cpu().numpy())
elif self.selection_method == "Entropy":
preds = torch.nn.functional.softmax(self.model(input.to(self.args.device)), dim=1).cpu().numpy()
scores = np.append(scores, (np.log(preds + 1e-6) * preds).sum(axis=1))
elif self.selection_method == 'Margin':
preds = torch.nn.functional.softmax(self.model(input.to(self.args.device)), dim=1)
preds_argmax = torch.argmax(preds, dim=1)
max_preds = preds[torch.ones(preds.shape[0], dtype=bool), preds_argmax].clone()
preds[torch.ones(preds.shape[0], dtype=bool), preds_argmax] = -1.0
preds_sub_argmax = torch.argmax(preds, dim=1)
scores = np.append(scores, (max_preds - preds[
torch.ones(preds.shape[0], dtype=bool), preds_sub_argmax]).cpu().numpy())
return scores
def rank_uncertainty_clip(self,index=None):
self.model.eval()
with torch.no_grad():
train_loader = select_dm_loader(self.args,self.dst_train,index)
scores = np.array([])
for i, batch in enumerate(train_loader):
# if i % self.args.print_freq == 0:
# print("| Selecting for batch [%3d/%3d]" % (i + 1, batch_num))
image, label = batch['img'].cuda(), batch['label'].cuda()
logits = self.model(image,label) ##Eval mode
if self.selection_method == "LeastConfidence":
scores = np.append(scores, logits.max(axis=1).values.cpu().numpy())
elif self.selection_method == "Entropy":
preds = torch.softmax(logits, dim=1).cpu().numpy()
scores = np.append(scores, (np.log(preds + 1e-6) * preds).sum(axis=1))
elif self.selection_method == 'Margin':
preds = torch.softmax(logits, dim=1)
preds_argmax = torch.argmax(preds, dim=1)
max_preds = preds[torch.ones(preds.shape[0], dtype=bool), preds_argmax].clone()
preds[torch.ones(preds.shape[0], dtype=bool), preds_argmax] = -1.0
preds_sub_argmax = torch.argmax(preds, dim=1)
scores = np.append(scores, (max_preds - preds[torch.ones(preds.shape[0], dtype=bool), preds_sub_argmax]).cpu().numpy())
self.model.train()
return scores
def select(self, **kwargs):
selection_result = self.run()
return selection_result
def select_without_train(self):
selection_result = self.finish_run()
return selection_result