Files
DAPT/deepcore/nets/lenet.py
2025-10-07 22:42:55 +08:00

44 lines
1.5 KiB
Python

import torch.nn as nn
import torch.nn.functional as F
from torch import set_grad_enabled
from .nets_utils import EmbeddingRecorder
# Acknowledgement to
# https://github.com/kuangliu/pytorch-cifar,
# https://github.com/BIGBALLON/CIFAR-ZOO,
class LeNet(nn.Module):
def __init__(self, channel, num_classes, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
if pretrained:
raise NotImplementedError("torchvison pretrained models not available.")
super(LeNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(channel, 6, kernel_size=5, padding=2 if channel == 1 else 0),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.fc_1 = nn.Linear(16 * 53 * 53 if im_size[0] == im_size[1] == 224 else 16 * 5 * 5, 120)
self.fc_2 = nn.Linear(120, 84)
self.fc_3 = nn.Linear(84, num_classes)
self.embedding_recorder = EmbeddingRecorder(record_embedding)
self.no_grad = no_grad
def get_last_layer(self):
return self.fc_3
def forward(self, x):
with set_grad_enabled(not self.no_grad):
x = self.features(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc_1(x))
x = F.relu(self.fc_2(x))
x = self.embedding_recorder(x)
x = self.fc_3(x)
return x