Files
DAPT/deepcore/nets/mlp.py
2025-10-07 22:42:55 +08:00

38 lines
1.2 KiB
Python

import torch.nn as nn
import torch.nn.functional as F
from torch import set_grad_enabled
from .nets_utils import EmbeddingRecorder
# Acknowledgement to
# https://github.com/kuangliu/pytorch-cifar,
# https://github.com/BIGBALLON/CIFAR-ZOO,
''' MLP '''
class MLP(nn.Module):
def __init__(self, channel, num_classes, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
if pretrained:
raise NotImplementedError("torchvison pretrained models not available.")
super(MLP, self).__init__()
self.fc_1 = nn.Linear(im_size[0] * im_size[1] * channel, 128)
self.fc_2 = nn.Linear(128, 128)
self.fc_3 = nn.Linear(128, num_classes)
self.embedding_recorder = EmbeddingRecorder(record_embedding)
self.no_grad = no_grad
def get_last_layer(self):
return self.fc_3
def forward(self, x):
with set_grad_enabled(not self.no_grad):
out = x.view(x.size(0), -1)
out = F.relu(self.fc_1(out))
out = F.relu(self.fc_2(out))
out = self.embedding_recorder(out)
out = self.fc_3(out)
return out