305 lines
12 KiB
Python
305 lines
12 KiB
Python
import torch.nn as nn
|
||
from torch import set_grad_enabled, flatten, Tensor
|
||
from torchvision.models import mobilenetv3
|
||
from .nets_utils import EmbeddingRecorder
|
||
import math
|
||
|
||
'''MobileNetV3 in PyTorch.
|
||
Paper: "Inverted Residuals and Linear Bottlenecks:Mobile Networks for Classification, Detection and Segmentation"
|
||
|
||
Acknowlegement to:
|
||
https://github.com/d-li14/mobilenetv3.pytorch/blob/master/mobilenetv3.py
|
||
'''
|
||
|
||
|
||
def _make_divisible(v, divisor, min_value=None):
|
||
"""
|
||
This function is taken from the original tf repo.
|
||
It ensures that all layers have a channel number that is divisible by 8
|
||
It can be seen here:
|
||
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
||
"""
|
||
if min_value is None:
|
||
min_value = divisor
|
||
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||
# Make sure that round down does not go down by more than 10%.
|
||
if new_v < 0.9 * v:
|
||
new_v += divisor
|
||
return new_v
|
||
|
||
|
||
class h_sigmoid(nn.Module):
|
||
def __init__(self, inplace=True):
|
||
super(h_sigmoid, self).__init__()
|
||
self.relu = nn.ReLU6(inplace=inplace)
|
||
|
||
def forward(self, x):
|
||
return self.relu(x + 3) / 6
|
||
|
||
|
||
class h_swish(nn.Module):
|
||
def __init__(self, inplace=True):
|
||
super(h_swish, self).__init__()
|
||
self.sigmoid = h_sigmoid(inplace=inplace)
|
||
|
||
def forward(self, x):
|
||
return x * self.sigmoid(x)
|
||
|
||
|
||
class SELayer(nn.Module):
|
||
def __init__(self, channel, reduction=4):
|
||
super(SELayer, self).__init__()
|
||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||
self.fc = nn.Sequential(
|
||
nn.Linear(channel, _make_divisible(channel // reduction, 8)),
|
||
nn.ReLU(inplace=True),
|
||
nn.Linear(_make_divisible(channel // reduction, 8), channel),
|
||
h_sigmoid()
|
||
)
|
||
|
||
def forward(self, x):
|
||
b, c, _, _ = x.size()
|
||
y = self.avg_pool(x).view(b, c)
|
||
y = self.fc(y).view(b, c, 1, 1)
|
||
return x * y
|
||
|
||
|
||
def conv_3x3_bn(inp, oup, stride, padding=1):
|
||
return nn.Sequential(
|
||
nn.Conv2d(inp, oup, 3, stride, padding, bias=False),
|
||
nn.BatchNorm2d(oup),
|
||
h_swish()
|
||
)
|
||
|
||
|
||
def conv_1x1_bn(inp, oup):
|
||
return nn.Sequential(
|
||
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
||
nn.BatchNorm2d(oup),
|
||
h_swish()
|
||
)
|
||
|
||
|
||
class InvertedResidual(nn.Module):
|
||
def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
|
||
super(InvertedResidual, self).__init__()
|
||
assert stride in [1, 2]
|
||
|
||
self.identity = stride == 1 and inp == oup
|
||
|
||
if inp == hidden_dim:
|
||
self.conv = nn.Sequential(
|
||
# dw
|
||
nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim,
|
||
bias=False),
|
||
nn.BatchNorm2d(hidden_dim),
|
||
h_swish() if use_hs else nn.ReLU(inplace=True),
|
||
# Squeeze-and-Excite
|
||
SELayer(hidden_dim) if use_se else nn.Identity(),
|
||
# pw-linear
|
||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||
nn.BatchNorm2d(oup),
|
||
)
|
||
else:
|
||
self.conv = nn.Sequential(
|
||
# pw
|
||
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
|
||
nn.BatchNorm2d(hidden_dim),
|
||
h_swish() if use_hs else nn.ReLU(inplace=True),
|
||
# dw
|
||
nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim,
|
||
bias=False),
|
||
nn.BatchNorm2d(hidden_dim),
|
||
# Squeeze-and-Excite
|
||
SELayer(hidden_dim) if use_se else nn.Identity(),
|
||
h_swish() if use_hs else nn.ReLU(inplace=True),
|
||
# pw-linear
|
||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||
nn.BatchNorm2d(oup),
|
||
)
|
||
|
||
def forward(self, x):
|
||
if self.identity:
|
||
return x + self.conv(x)
|
||
else:
|
||
return self.conv(x)
|
||
|
||
|
||
class MobileNetV3_32x32(nn.Module):
|
||
def __init__(self, cfgs, mode, channel=3, num_classes=1000, record_embedding=False,
|
||
no_grad=False, width_mult=1.):
|
||
super(MobileNetV3_32x32, self).__init__()
|
||
# setting of inverted residual blocks
|
||
self.cfgs = cfgs
|
||
assert mode in ['mobilenet_v3_large', 'mobilenet_v3_small']
|
||
|
||
self.embedding_recorder = EmbeddingRecorder(record_embedding)
|
||
self.no_grad = no_grad
|
||
|
||
# building first layer
|
||
input_channel = _make_divisible(16 * width_mult, 8)
|
||
layers = [conv_3x3_bn(channel, input_channel, 2, padding=3 if channel == 1 else 1)]
|
||
# building inverted residual blocks
|
||
block = InvertedResidual
|
||
for k, t, c, use_se, use_hs, s in self.cfgs:
|
||
output_channel = _make_divisible(c * width_mult, 8)
|
||
exp_size = _make_divisible(input_channel * t, 8)
|
||
layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
|
||
input_channel = output_channel
|
||
self.features = nn.Sequential(*layers)
|
||
# building last several layers
|
||
self.conv = conv_1x1_bn(input_channel, exp_size)
|
||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||
output_channel = {'mobilenet_v3_large': 1280, 'mobilenet_v3_small': 1024}
|
||
output_channel = _make_divisible(output_channel[mode] * width_mult, 8) if width_mult > 1.0 else output_channel[
|
||
mode]
|
||
self.classifier = nn.Sequential(
|
||
nn.Linear(exp_size, output_channel),
|
||
h_swish(),
|
||
nn.Dropout(0.2),
|
||
self.embedding_recorder,
|
||
nn.Linear(output_channel, num_classes),
|
||
)
|
||
|
||
self._initialize_weights()
|
||
|
||
def forward(self, x):
|
||
with set_grad_enabled(not self.no_grad):
|
||
x = self.features(x)
|
||
x = self.conv(x)
|
||
x = self.avgpool(x)
|
||
x = x.view(x.size(0), -1)
|
||
x = self.classifier(x)
|
||
return x
|
||
|
||
def _initialize_weights(self):
|
||
for m in self.modules():
|
||
if isinstance(m, nn.Conv2d):
|
||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||
if m.bias is not None:
|
||
m.bias.data.zero_()
|
||
elif isinstance(m, nn.BatchNorm2d):
|
||
m.weight.data.fill_(1)
|
||
m.bias.data.zero_()
|
||
elif isinstance(m, nn.Linear):
|
||
m.weight.data.normal_(0, 0.01)
|
||
m.bias.data.zero_()
|
||
|
||
def get_last_layer(self):
|
||
return self.classifier[-1]
|
||
|
||
|
||
class MobileNetV3_224x224(mobilenetv3.MobileNetV3):
|
||
def __init__(self, inverted_residual_setting, last_channel,
|
||
channel=3, num_classes=1000, record_embedding=False, no_grad=False, **kwargs):
|
||
super(MobileNetV3_224x224, self).__init__(inverted_residual_setting, last_channel,
|
||
num_classes=num_classes, **kwargs)
|
||
|
||
self.embedding_recorder = EmbeddingRecorder(record_embedding)
|
||
|
||
self.fc = self.classifier[-1]
|
||
self.classifier[-1] = self.embedding_recorder
|
||
self.classifier.add_module("fc", self.fc)
|
||
|
||
self.no_grad = no_grad
|
||
|
||
def get_last_layer(self):
|
||
return self.fc
|
||
|
||
def _forward_impl(self, x: Tensor) -> Tensor:
|
||
with set_grad_enabled(not self.no_grad):
|
||
x = self.features(x)
|
||
x = self.avgpool(x)
|
||
x = flatten(x, 1)
|
||
x = self.classifier(x)
|
||
return x
|
||
|
||
|
||
def MobileNetV3(arch: str, channel: int, num_classes: int, im_size, record_embedding: bool = False,
|
||
no_grad: bool = False,
|
||
pretrained: bool = False, **kwargs):
|
||
arch = arch.lower()
|
||
if pretrained:
|
||
if channel != 3:
|
||
raise NotImplementedError("Network Architecture for current dataset has not been implemented.")
|
||
|
||
inverted_residual_setting, last_channel = mobilenetv3._mobilenet_v3_conf(arch)
|
||
net = MobileNetV3_224x224(inverted_residual_setting=inverted_residual_setting, last_channel=last_channel,
|
||
channel=3, num_classes=1000, record_embedding=record_embedding, no_grad=no_grad,
|
||
**kwargs)
|
||
|
||
from torch.hub import load_state_dict_from_url
|
||
state_dict = load_state_dict_from_url(mobilenetv3.model_urls[arch], progress=True)
|
||
net.load_state_dict(state_dict)
|
||
|
||
if num_classes != 1000:
|
||
net.fc = nn.Linear(last_channel, num_classes)
|
||
net.classifier[-1] = net.fc
|
||
|
||
elif im_size[0] == 224 and im_size[1] == 224:
|
||
if channel != 3:
|
||
raise NotImplementedError("Network Architecture for current dataset has not been implemented.")
|
||
inverted_residual_setting, last_channel = mobilenetv3._mobilenet_v3_conf(arch)
|
||
net = MobileNetV3_224x224(inverted_residual_setting=inverted_residual_setting, last_channel=last_channel,
|
||
channel=channel, num_classes=num_classes, record_embedding=record_embedding,
|
||
no_grad=no_grad, **kwargs)
|
||
|
||
elif (channel == 1 and im_size[0] == 28 and im_size[1] == 28) or (
|
||
channel == 3 and im_size[0] == 32 and im_size[1] == 32):
|
||
if arch == "mobilenet_v3_large":
|
||
cfgs = [
|
||
# k, t, c, SE, HS, s
|
||
[3, 1, 16, 0, 0, 1],
|
||
[3, 4, 24, 0, 0, 2],
|
||
[3, 3, 24, 0, 0, 1],
|
||
[5, 3, 40, 1, 0, 2],
|
||
[5, 3, 40, 1, 0, 1],
|
||
[5, 3, 40, 1, 0, 1],
|
||
[3, 6, 80, 0, 1, 2],
|
||
[3, 2.5, 80, 0, 1, 1],
|
||
[3, 2.3, 80, 0, 1, 1],
|
||
[3, 2.3, 80, 0, 1, 1],
|
||
[3, 6, 112, 1, 1, 1],
|
||
[3, 6, 112, 1, 1, 1],
|
||
[5, 6, 160, 1, 1, 2],
|
||
[5, 6, 160, 1, 1, 1],
|
||
[5, 6, 160, 1, 1, 1]
|
||
]
|
||
net = MobileNetV3_32x32(cfgs, arch, channel=channel, num_classes=num_classes,
|
||
record_embedding=record_embedding, no_grad=no_grad)
|
||
elif arch == "mobilenet_v3_small":
|
||
cfgs = [
|
||
# k, t, c, SE, HS, s
|
||
[3, 1, 16, 1, 0, 2],
|
||
[3, 4.5, 24, 0, 0, 2],
|
||
[3, 3.67, 24, 0, 0, 1],
|
||
[5, 4, 40, 1, 1, 2],
|
||
[5, 6, 40, 1, 1, 1],
|
||
[5, 6, 40, 1, 1, 1],
|
||
[5, 3, 48, 1, 1, 1],
|
||
[5, 3, 48, 1, 1, 1],
|
||
[5, 6, 96, 1, 1, 2],
|
||
[5, 6, 96, 1, 1, 1],
|
||
[5, 6, 96, 1, 1, 1],
|
||
]
|
||
net = MobileNetV3_32x32(cfgs, arch, channel=channel, num_classes=num_classes,
|
||
record_embedding=record_embedding, no_grad=no_grad)
|
||
else:
|
||
raise ValueError("Model architecture not found.")
|
||
else:
|
||
raise NotImplementedError("Network Architecture for current dataset has not been implemented.")
|
||
return net
|
||
|
||
|
||
def MobileNetV3Large(channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
|
||
pretrained: bool = False, **kwargs):
|
||
return MobileNetV3("mobilenet_v3_large", channel, num_classes, im_size, record_embedding, no_grad,
|
||
pretrained, **kwargs)
|
||
|
||
|
||
def MobileNetV3Small(channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
|
||
pretrained: bool = False, **kwargs):
|
||
return MobileNetV3("mobilenet_v3_small", channel, num_classes, im_size, record_embedding, no_grad,
|
||
pretrained, **kwargs)
|