Files
DAPT/deepcore/nets/resnet.py
2025-10-07 22:42:55 +08:00

242 lines
11 KiB
Python

import torch.nn as nn
import torch.nn.functional as F
from torch import set_grad_enabled, flatten, Tensor
from .nets_utils import EmbeddingRecorder
from torchvision.models import resnet
# Acknowledgement to
# https://github.com/kuangliu/pytorch-cifar,
# https://github.com/BIGBALLON/CIFAR-ZOO,
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_planes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet_32x32(nn.Module):
def __init__(self, block, num_blocks, channel=3, num_classes=10, record_embedding: bool = False,
no_grad: bool = False):
super().__init__()
self.in_planes = 64
self.conv1 = conv3x3(channel, 64)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
self.embedding_recorder = EmbeddingRecorder(record_embedding)
self.no_grad = no_grad
def get_last_layer(self):
return self.linear
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
with set_grad_enabled(not self.no_grad):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.embedding_recorder(out)
out = self.linear(out)
return out
class ResNet_224x224(resnet.ResNet):
def __init__(self, block, layers, channel: int, num_classes: int, record_embedding: bool = False,
no_grad: bool = False, **kwargs):
super().__init__(block, layers, **kwargs)
self.embedding_recorder = EmbeddingRecorder(record_embedding)
if channel != 3:
self.conv1 = nn.Conv2d(channel, 64, kernel_size=7, stride=2, padding=3, bias=False)
if num_classes != 1000:
self.fc = nn.Linear(self.fc.in_features, num_classes)
self.no_grad = no_grad
def get_last_layer(self):
return self.fc
def _forward_impl(self, x: Tensor) -> Tensor:
# See note [TorchScript super()]
with set_grad_enabled(not self.no_grad):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = flatten(x, 1)
x = self.embedding_recorder(x)
x = self.fc(x)
return x
def ResNet(arch: str, channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
arch = arch.lower()
if pretrained:
if arch == "resnet18":
net = ResNet_224x224(resnet.BasicBlock, [2, 2, 2, 2], channel=3, num_classes=1000,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet34":
net = ResNet_224x224(resnet.BasicBlock, [3, 4, 6, 3], channel=3, num_classes=1000,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet50":
net = ResNet_224x224(resnet.Bottleneck, [3, 4, 6, 3], channel=3, num_classes=1000,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet101":
net = ResNet_224x224(resnet.Bottleneck, [3, 4, 23, 3], channel=3, num_classes=1000,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet152":
net = ResNet_224x224(resnet.Bottleneck, [3, 8, 36, 3], channel=3, num_classes=1000,
record_embedding=record_embedding, no_grad=no_grad)
else:
raise ValueError("Model architecture not found.")
from torch.hub import load_state_dict_from_url
state_dict = load_state_dict_from_url(resnet.model_urls[arch], progress=True)
net.load_state_dict(state_dict)
if channel != 3:
net.conv1 = nn.Conv2d(channel, 64, kernel_size=7, stride=2, padding=3, bias=False)
if num_classes != 1000:
net.fc = nn.Linear(net.fc.in_features, num_classes)
elif im_size[0] == 224 and im_size[1] == 224:
if arch == "resnet18":
net = ResNet_224x224(resnet.BasicBlock, [2, 2, 2, 2], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet34":
net = ResNet_224x224(resnet.BasicBlock, [3, 4, 6, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet50":
net = ResNet_224x224(resnet.Bottleneck, [3, 4, 6, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet101":
net = ResNet_224x224(resnet.Bottleneck, [3, 4, 23, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet152":
net = ResNet_224x224(resnet.Bottleneck, [3, 8, 36, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
else:
raise ValueError("Model architecture not found.")
elif (channel == 1 and im_size[0] == 28 and im_size[1] == 28) or (
channel == 3 and im_size[0] == 32 and im_size[1] == 32):
if arch == "resnet18":
net = ResNet_32x32(BasicBlock, [2, 2, 2, 2], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet34":
net = ResNet_32x32(BasicBlock, [3, 4, 6, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet50":
net = ResNet_32x32(Bottleneck, [3, 4, 6, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet101":
net = ResNet_32x32(Bottleneck, [3, 4, 23, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
elif arch == "resnet152":
net = ResNet_32x32(Bottleneck, [3, 8, 36, 3], channel=channel, num_classes=num_classes,
record_embedding=record_embedding, no_grad=no_grad)
else:
raise ValueError("Model architecture not found.")
else:
raise NotImplementedError("Network Architecture for current dataset has not been implemented.")
return net
def ResNet18(channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
return ResNet("resnet18", channel, num_classes, im_size, record_embedding, no_grad, pretrained)
def ResNet34(channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
return ResNet("resnet34", channel, num_classes, im_size, record_embedding, no_grad, pretrained)
def ResNet50(channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
return ResNet("resnet50", channel, num_classes, im_size, record_embedding, no_grad, pretrained)
def ResNet101(channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
return ResNet("resnet101", channel, num_classes, im_size, record_embedding, no_grad, pretrained)
def ResNet152(channel: int, num_classes: int, im_size, record_embedding: bool = False, no_grad: bool = False,
pretrained: bool = False):
return ResNet("resnet152", channel, num_classes, im_size, record_embedding, no_grad, pretrained)