Files
DAPT/interpret_prompts/interpret_prompt.py
2025-10-07 22:42:55 +08:00

84 lines
2.5 KiB
Python

import os
import sys
import argparse
import torch
from clip.simple_tokenizer import SimpleTokenizer
from clip import clip
# "ViT-B/16"
# "RN50"
def load_clip_to_cpu(backbone_name="ViT-B/16"):
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
model = clip.build_model(state_dict or model.state_dict())
return model
# parser = argparse.ArgumentParser()
# parser.add_argument("fpath", type=str, help="Path to the learned prompt")
# parser.add_argument("topk", type=int, help="Select top-k similar words")
# args = parser.parse_args()
fpath = "./compound_prompt_weights/train_base/food101/shots_16/cocoop/vit_b16_c4_ep10_batch1_ctxv1/seed1/prompt_learner/model.pth.tar-5"
topk = 10
assert os.path.exists(fpath)
print(f"Return the top-{topk} matched words")
tokenizer = SimpleTokenizer()
clip_model = load_clip_to_cpu()
token_embedding = clip_model.token_embedding.weight
print(f"Size of token embedding: {token_embedding.shape}")
prompt_learner = torch.load(fpath, map_location="cpu")["state_dict"]
# Extract the input tokens
ctx = prompt_learner["prompt_learner.ctx"]
ctx = ctx.float()
# Now extract the intermediate tokens
intermediate_embeddings = []
depth = 9 - 1
for i in range(depth):
# Now extract the prompt embeddings and store it
query = 'prompt_learner.compound_prompts_text.' + str(i)
temp = prompt_learner[query].float()
intermediate_embeddings.append(temp)
print(f"Size of context: {ctx.shape}")
# Now repeat this for all layer context embeddings
all_layer_ctx = [ctx] + intermediate_embeddings
for idx, single_ctx in enumerate(all_layer_ctx):
print("SHOWING RESULTS FOR CTX Vectors of Layer: ", idx + 1)
ctx = single_ctx
if ctx.dim() == 2:
# Generic context
distance = torch.cdist(ctx, token_embedding)
print(f"Size of distance matrix: {distance.shape}")
sorted_idxs = torch.argsort(distance, dim=1)
sorted_idxs = sorted_idxs[:, :topk]
for m, idxs in enumerate(sorted_idxs):
words = [tokenizer.decoder[idx.item()] for idx in idxs]
dist = [f"{distance[m, idx].item():.4f}" for idx in idxs]
print(f"{m+1}: {words} {dist}")
elif ctx.dim() == 3:
# Class-specific context
raise NotImplementedError
print("##############################")
print("##############################")