Files
DAPT/clip/model.py
2025-10-07 22:42:55 +08:00

742 lines
33 KiB
Python

from collections import OrderedDict
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x[0]
class ModifiedResNet(nn.Module):
"""
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(width // 2)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
x = x.type(self.conv1.weight.dtype)
x = stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.attnpool(x)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class ResidualAttentionBlock_IVLP(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, add_prompt=False,
text_layer=False, i=0, design_details=None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
# Only add learnable tokens if flag is set True
# For the first iteration i, we should not add the learnable parameters
# as it is already been taken care of in the very start, for both text
# and the visual branch
self.text_layer = text_layer
self.attn_mask = attn_mask
if i != 0:
self.add_prompt = add_prompt
if self.add_prompt:
if self.text_layer:
self.n_ctx_text = design_details["language_ctx"] # hyperparameter
ctx_vectors = torch.empty(self.n_ctx_text, d_model)
else:
self.n_ctx_visual = design_details["vision_ctx"] # hyperparameter
ctx_vectors = torch.empty(self.n_ctx_visual, d_model)
# Code snippet for per layer visual prompts
nn.init.normal_(ctx_vectors, std=0.02)
self.VPT_shallow = nn.Parameter(ctx_vectors)
else:
self.add_prompt = False
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
# Will need to append the learnable tokens for this layer here
# Check if flag was set for this layer or not
if self.add_prompt:
# Also see if this is textual transformer layer or not
if not self.text_layer:
# Remove the outputs produced by learnable tokens of previous layer
prefix = x[0:x.shape[0] - self.n_ctx_visual, :, :]
# Create/configure learnable tokens of this layer
visual_context = self.VPT_shallow.expand(x.shape[1], -1, -1).permute(1, 0, 2).half()
# Add the learnable tokens of this layer with the input, by replacing the previous
# layer learnable tokens
x = torch.cat([prefix, visual_context], dim=0)
else:
# Appending the learnable tokens in different way
# x -> [77, NCLS, DIM]
# First remove the learnable tokens from previous layer
prefix = x[:1, :, :]
suffix = x[1 + self.n_ctx_text:, :, :]
# Create/configure learnable tokens of this layer
textual_context = self.VPT_shallow.expand(x.shape[1], -1, -1).permute(1, 0, 2).half()
# Add the learnable tokens of this layer with the input, replaced by previous
# layer learnable tokens
x = torch.cat([prefix, textual_context, suffix], dim=0)
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class ResidualAttentionBlock_MaPLe(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, design_details=None,
text_layer=False, i=0):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
# For the first iteration i, we do not need to add the learnable parameters here
# as it will be added in the beginning, for both text and the vision branch
self.text_layer = text_layer
self.attn_mask = attn_mask
# This must be consistent with the config file prompt
self.compound_prompt_nctx = design_details['maple_length']
if i == 0:
self.first_layer = True
else:
self.first_layer = False
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=True, attn_mask=self.attn_mask)
def forward(self, inputs):
# For the first layer, we do not need to add any duplicate, as it is already added
# as the shallow version
x = inputs[0]
compound_prompts_deeper = inputs[1]
counter = inputs[2]
if not self.first_layer:
if len(compound_prompts_deeper) > 0:
# This means that deeper compound prompts are turned on
# Here it behaves differently for text and visual side
# Forward function is same for both
if not self.text_layer:
# First check if the ith layer needs compound prompts or not
if not (counter > len(compound_prompts_deeper) - 1):
# Remove the outputs produced by learnable tokens of previous layer
prefix = x[0:x.shape[0] - self.compound_prompt_nctx, :, :]
# Create/configure learnable tokens of this layer
visual_context = compound_prompts_deeper[counter] # extract the correct index
visual_context = visual_context.expand(x.shape[1], -1, -1).permute(1, 0, 2).half()
# Add the learnable tokens of this layer with the input, by replacing previous
# layer learnable tokens
x = torch.cat([prefix, visual_context], dim=0)
# Once done, update the counter, so that the next time, it does not use same learnable tokens
counter += 1
else:
# First check if the ith layer needs compound prompts or not
if not (counter > len(compound_prompts_deeper) - 1):
# Appending the learnable tokens in different way
# x -> [77, NCLS, DIM]
# First remove the learnable tokens from previous layer
prefix = x[:1, :, :]
suffix = x[1 + self.compound_prompt_nctx:, :, :]
# Create/configure learnable tokens of this layer
textual_context = compound_prompts_deeper[counter]
textual_context = textual_context.expand(x.shape[1], -1, -1).permute(1, 0, 2).half()
# Add the learnable tokens of this layer with the input, replaced by previous
# layer learnable tokens
x = torch.cat([prefix, textual_context, suffix], dim=0)
# Once done, update the counter, so that the next time, it does not use same learnable tokens
counter += 1
inp,attn_mask = self.attention(self.ln_1(x))
x = x + inp
x = x + self.mlp(self.ln_2(x))
if self.text_layer:
return [x, compound_prompts_deeper, counter]
else:
return [x, compound_prompts_deeper, counter, attn_mask] # return again as a list, so that nn.seq can work
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, prompts_needed=0,
text_layer=False, design_details=None):
super().__init__()
self.width = width
self.layers = layers
# Implements respective encoder blocks for a given design choice
current_trainer = design_details['trainer']
if current_trainer == 'IVLP' or current_trainer == 'VPT':
self.resblocks = nn.Sequential(*[ResidualAttentionBlock_IVLP(width, heads, attn_mask, True,
text_layer, i,
design_details) if prompts_needed > i
else ResidualAttentionBlock_IVLP(width, heads, attn_mask, False,
text_layer, i, design_details)
for i in range(layers)])
elif current_trainer == 'MaPLe':
self.resblocks = nn.Sequential(
*[ResidualAttentionBlock_MaPLe(width, heads, attn_mask, design_details, text_layer, i)
for i in range(layers)])
else:
# Corresponds to default CoOp or CoCoOp
assert current_trainer == 'CoOp' or current_trainer == 'CoCoOp'
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class Transformer_normal(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, prompts_needed=0,
text_layer=False, design_details=None):
super().__init__()
self.width = width
self.layers = layers
# Implements respective encoder blocks for a given design choice
# current_trainer = design_details['trainer']
# if current_trainer == 'IVLP' or current_trainer == 'VPT':
# self.resblocks = nn.Sequential(*[ResidualAttentionBlock_IVLP(width, heads, attn_mask, True,
# text_layer, i,
# design_details) if prompts_needed > i
# else ResidualAttentionBlock_IVLP(width, heads, attn_mask, False,
# text_layer, i, design_details)
# for i in range(layers)])
# elif current_trainer == 'MaPLe':
# self.resblocks = nn.Sequential(
# *[ResidualAttentionBlock_MaPLe(width, heads, attn_mask, design_details, text_layer, i)
# for i in range(layers)])
# else:
# # Corresponds to default CoOp or CoCoOp
# assert current_trainer == 'CoOp' or current_trainer == 'CoCoOp'
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class VisionTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int,
output_dim: int, design_details):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
if design_details["vision_depth"] == 0:
self.VPT_shallow = False
else:
self.VPT_shallow = True
if self.VPT_shallow:
# Add visual prompt tokens here
n_ctx = design_details["vision_ctx"] # hyperparameter
ctx_vectors = torch.empty(n_ctx, width)
nn.init.normal_(ctx_vectors, std=0.02)
self.VPT = nn.Parameter(ctx_vectors)
# self.VPT.half()
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
# hyper-parameter if need to add prompt embeddings inside to the input
# of transformer block or not:
self.prompt_till_layer_visual = design_details["vision_depth"]
self.transformer = Transformer_normal(width, layers, heads, prompts_needed=self.prompt_till_layer_visual,
design_details=design_details)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat(
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
# After positional embeddings, we will attach prompts with the model, remember only those
# are trainable parameters here in whole image encoder.
if self.VPT_shallow:
visual_ctx = self.VPT.expand(x.shape[0], -1, -1).half()
x = torch.cat([x, visual_ctx], dim=1)
else:
assert self.prompt_till_layer_visual == 0
# Normal code as before
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, 0, :])
if self.proj is not None:
x = x @ self.proj
return x
class VisionTransformer_MaPLe(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int,
design_details):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
self.VPT_shallow = True
scale = width ** -0.5
self.patch_num = self.input_resolution // patch_size
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
# hyper-parameter if need to add prompt embeddings inside to the input
# of transformer block or not:
self.prompt_till_layer_visual = 0
self.transformer = Transformer(width, layers, heads, design_details=design_details)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor, shared_ctx, compound_deeper_prompts):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, output_size]
x = torch.cat(
[self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
# After positional embeddings, we will attach prompts with the model, remember only those
# are trainable parameters here in whole image encoder.
if self.VPT_shallow:
visual_ctx = shared_ctx.expand(x.shape[0], -1, -1).half()
x = torch.cat([x, visual_ctx], dim=1)
else:
assert self.prompt_till_layer_visual == 0
# Normal code as before
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
# Again combine the inputs, so nn.sequential can work
outputs = self.transformer([x, compound_deeper_prompts, 0]) # third argument is counter
x = outputs[0]
mask = outputs[3]
x = x.permute(1, 0, 2) # LND -> NLD
visual_ctx = x[:,-shared_ctx.shape[0]:,:]
x = self.ln_post(x[:, 0, :]) #only cls embedding is selected
visual_ctx = self.ln_post(visual_ctx)
if self.proj is not None:
x = x @ self.proj
visual_ctx = visual_ctx @ self.proj
return x,visual_ctx,mask
class CLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
design_details
):
super().__init__()
self.context_length = context_length
trainer = design_details['trainer']
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width
)
else:
vision_heads = vision_width // 64
if trainer == "MaPLe":
self.visual = VisionTransformer_MaPLe(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
design_details=design_details
)
self.visual_ori = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
design_details=design_details
)
else:
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
design_details=design_details
)
# hyper-parameter if need to add prompt embeddings inside to the input
# of transformer block or not:
prompt_till_layer_text = design_details['language_depth']
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask(),
prompts_needed=prompt_till_layer_text,
text_layer=True,
design_details=design_details
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_text(self, text):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
return x
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logit_scale * text_features @ image_features.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
def build_model(state_dict: dict, design_details):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in
[1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, design_details
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
convert_weights(model)
try:
model.load_state_dict(state_dict)
except:
missing_keys, _ = model.load_state_dict(state_dict, strict=False)
print('Weights not found for some missing keys: ', missing_keys)
return model.eval()