Files
DAPT/parse_test_res.py
2025-10-07 22:42:55 +08:00

268 lines
8.5 KiB
Python

"""
Goal
---
1. Read test results from log.txt.txt files
2. Compute mean and std across different folders (seeds)
Usage
---
Assume the output files are saved under output/my_experiment,
which contains results of different seeds, e.g.,
my_experiment/
seed1/
log.txt.txt
seed2/
log.txt.txt
seed3/
log.txt.txt
Run the following command from the root directory:
$ python tools/parse_test_res.py output/my_experiment
Add --ci95 to the argument if you wanna get 95% confidence
interval instead of standard deviation:
$ python tools/parse_test_res.py output/my_experiment --ci95
If my_experiment/ has the following structure,
my_experiment/
exp-1/
seed1/
log.txt.txt
...
seed2/
log.txt.txt
...
seed3/
log.txt.txt
...
exp-2/
...
exp-3/
...
Run
$ python tools/parse_test_res.py output/my_experiment --multi-exp
"""
import re
import numpy as np
import os.path as osp
import argparse
from collections import OrderedDict, defaultdict
import os
from dassl.utils import check_isfile, listdir_nohidden
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.pyplot import MultipleLocator
import pickle
def compute_ci95(res):
return 1.96 * np.std(res) / np.sqrt(len(res))
def parse_function(*metrics, directory="", args=None, end_signal=None):
# print(f"Parsing files in {directory}")
subdirs = listdir_nohidden(directory, sort=True)
outputs = []
for subdir in subdirs:
fpath = osp.join(directory, subdir, "log.txt")
assert check_isfile(fpath)
good_to_go = False
output = OrderedDict()
with open(fpath, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line == end_signal:
good_to_go = True
for metric in metrics:
match = metric["regex"].search(line)
if match and good_to_go:
if "file" not in output:
output["file"] = fpath
num = float(match.group(1))
name = metric["name"]
output[name] = num
if output:
outputs.append(output)
assert len(outputs) > 0, f"Nothing found in {directory}"
metrics_results = defaultdict(list)
for output in outputs:
msg = ""
for key, value in output.items():
if isinstance(value, float):
msg += f"{key}: {value:.2f}%. "
else:
msg += f"{key}: {value}. "
if key != "file":
metrics_results[key].append(value)
# print(msg)
output_results = OrderedDict()
# print("===")
# print(f"Summary of directory: {directory}")
for key, values in metrics_results.items():
avg = np.mean(values)
std = compute_ci95(values) if args.ci95 else np.std(values)
# print(f"* {key}: {avg:.2f}% +- {std:.2f}%")
output_results[key] = avg
output_results['std'] = std
# print("===")
return output_results
def main(args, end_signal):
metric = {
"name": args.keyword,
"regex": re.compile(fr"\* {args.keyword}: ([\.\deE+-]+)%"),
}
if args.multi_exp:
final_results = defaultdict(list)
for directory in listdir_nohidden(args.directory, sort=True):
directory = osp.join(args.directory, directory)
results = parse_function(
metric, directory=directory, args=args, end_signal=end_signal
)
for key, value in results.items():
final_results[key].append(value)
print("Average performance")
for key, values in final_results.items():
avg = np.mean(values)
print(f"* {key}: {avg:.2f}%")
else:
z = parse_function(
metric, directory=args.directory, args=args, end_signal=end_signal
)
return z
if __name__ == "__main__":
case = 'btn' #final, few, btn
data = 'ImageNet' #[ OxfordPets Caltech101 FGVCAircraft StanfordCars DescribableTextures Food101
# SUN397 UCF101 OxfordFlowers EuroSAT]
Method = ["Uniform"] #Forgetting ,"Uncertainty", "Herding", "Submodular", "Glister", "GraNd", "Craig", "Cal"
if case == 'final':
scope = [0.05,0.1,0.2,0.3,0.5,1.0] #0.05, 0.1, 0.2, 0.3, 0.5, 1.0
few_scope = [16] #[1, 2, 4, 8, 16]
elif case == 'few':
scope = [1.0] #0.05, 0.1, 0.2, 0.3, 0.5, 1.0
few_scope = [1, 2, 4, 8, 16] #[1, 2, 4, 8, 16]
elif case == 'btn':
scope = [1.0] #0.05, 0.1, 0.2, 0.3, 0.5, 1.0
few_scope = [16] #[1, 2, 4, 8, 16]
# 'Forgetting', 'Herding', 'Submodular' (GraphCut/Facility Location), 'Glister',
# 'GraNd', 'Craig', 'Cal']
parser = argparse.ArgumentParser()
parser.add_argument("--directory", type=str,default='output', help="path to directory")
parser.add_argument(
"--ci95", action="store_true", help=r"compute 95\% confidence interval"
)
parser.add_argument("--test-log", action="store_true", help="parse test-only logs")
parser.add_argument(
"--multi-exp", action="store_true", help="parse multiple experiments"
)
parser.add_argument(
"--keyword", default="accuracy", type=str, help="which keyword to extract"
)
args = parser.parse_args()
end_signal = "Finish training"
if args.test_log:
end_signal = "=> result"
pallete = [
'95a2ff',
'fa8080',
'ffc076',
'bf19ff',
'87e885',
'f9e264',
'bdb76b',
'5f45ff',
'cb9bff',
'009db2',
'0090ff',
'314976',
'765005',
]
res_l = []
plt.figure(figsize=(8,8)) #30,15
plt.style.use('seaborn-darkgrid')
ax = plt.subplot()
for num_m,m in enumerate(Method):
if m != 'Uniform':
s = scope[:-1]
else:
s = scope
for i in range(len(s)):
for few in range(len(few_scope)):
args.directory = os.path.join('output_'+case,data,m + '_'+ str(s[i]) + '_'+str(few_scope[few]))
res = main(args, end_signal)
if case == 'final':
args.directory = os.path.join('/home/ubuntu/VLTuning/multimodal-prompt-learning-main/output',data,m + '_'+ str(s[i]))
res_base = main(args, end_signal)
print(f"{data}_Baseline_{s[i]}/{data}_Updated_{s[i]}: {res_base['accuracy']:.2f}+{res_base['std']:.2f} / {res['accuracy']:.2f}+{res['std']:.2f}")
elif case == 'btn':
args.directory = os.path.join('output_'+case + '_test',data,m + '_'+ str(s[i]) + '_'+str(few_scope[few]))
res_base = main(args, 'Evaluate on the *test* set')
harmony = 2 / (1/res_base['accuracy'] + 1/res['accuracy'])
print(f"{data}_Base_{s[i]}/{data}_Novel_{s[i]}/HM: {res['accuracy']:.2f} / {res_base['accuracy']:.2f} / {harmony:.2f}")
else:
print(f"{data}_Baseline_{s[i]}_shot_{few_scope[few]}: {res['accuracy']:.2f}+{res['std']:.2f}")
if m == 'Uniform' and i == (len(s)-1):
final = res['accuracy']
res_l.append(res['accuracy'])
if m != 'Uniform':
res_l.append(final)
x = range(0, len(scope))
# if m != 'Uniform':
# ax.plot(x, res_l, label=Method[num_m], linewidth=2, linestyle='-',color='#'+pallete[num_m], marker='o',markersize=6)
# else:
# ax.plot(x, res_l, label=Method[num_m], linewidth=5, linestyle='--',color='#'+pallete[num_m], marker='o',markersize=10)
res_l = []
ax.grid(True)
ax.set_xlabel('Data Volume', fontsize=20, fontdict={'family': 'Times New Roman', 'weight': "medium"})
ax.set_ylabel('Accuracy (%)', fontsize=20, fontdict={'family': 'Times New Roman', 'weight': "medium"})
ax.legend(prop={'size': 18, 'family': 'Times New Roman', 'weight': "bold"}, frameon=True)
plt.title(data, fontdict={'family': 'Times New Roman', 'weight': "semibold"}, fontsize=20)
plt.xticks(range(len(scope)),scope,fontsize=15)
plt.yticks(fontsize=15)
# plt.ylim((65,79))
# save_name = 'Basline_fig2'
# if not os.path.exists(save_name):
# os.mkdir(save_name)
# plt.savefig(os.path.join(save_name,data+'.pdf'),bbox_inches='tight')
# plt.show()