release code
This commit is contained in:
68
Dassl.ProGrad.pytorch/dassl/data/datasets/da/cifarstl.py
Normal file
68
Dassl.ProGrad.pytorch/dassl/data/datasets/da/cifarstl.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import os.path as osp
|
||||
|
||||
from dassl.utils import listdir_nohidden
|
||||
|
||||
from ..build import DATASET_REGISTRY
|
||||
from ..base_dataset import Datum, DatasetBase
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class CIFARSTL(DatasetBase):
|
||||
"""CIFAR-10 and STL-10.
|
||||
|
||||
CIFAR-10:
|
||||
- 60,000 32x32 colour images.
|
||||
- 10 classes, with 6,000 images per class.
|
||||
- 50,000 training images and 10,000 test images.
|
||||
- URL: https://www.cs.toronto.edu/~kriz/cifar.html.
|
||||
|
||||
STL-10:
|
||||
- 10 classes: airplane, bird, car, cat, deer, dog, horse,
|
||||
monkey, ship, truck.
|
||||
- Images are 96x96 pixels, color.
|
||||
- 500 training images (10 pre-defined folds), 800 test images
|
||||
per class.
|
||||
- URL: https://cs.stanford.edu/~acoates/stl10/.
|
||||
|
||||
Reference:
|
||||
- Krizhevsky. Learning Multiple Layers of Features
|
||||
from Tiny Images. Tech report.
|
||||
- Coates et al. An Analysis of Single Layer Networks in
|
||||
Unsupervised Feature Learning. AISTATS 2011.
|
||||
"""
|
||||
|
||||
dataset_dir = "cifar_stl"
|
||||
domains = ["cifar", "stl"]
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = osp.join(root, self.dataset_dir)
|
||||
|
||||
self.check_input_domains(
|
||||
cfg.DATASET.SOURCE_DOMAINS, cfg.DATASET.TARGET_DOMAINS
|
||||
)
|
||||
|
||||
train_x = self._read_data(cfg.DATASET.SOURCE_DOMAINS, split="train")
|
||||
train_u = self._read_data(cfg.DATASET.TARGET_DOMAINS, split="train")
|
||||
test = self._read_data(cfg.DATASET.TARGET_DOMAINS, split="test")
|
||||
|
||||
super().__init__(train_x=train_x, train_u=train_u, test=test)
|
||||
|
||||
def _read_data(self, input_domains, split="train"):
|
||||
items = []
|
||||
|
||||
for domain, dname in enumerate(input_domains):
|
||||
data_dir = osp.join(self.dataset_dir, dname, split)
|
||||
class_names = listdir_nohidden(data_dir)
|
||||
|
||||
for class_name in class_names:
|
||||
class_dir = osp.join(data_dir, class_name)
|
||||
imnames = listdir_nohidden(class_dir)
|
||||
label = int(class_name.split("_")[0])
|
||||
|
||||
for imname in imnames:
|
||||
impath = osp.join(class_dir, imname)
|
||||
item = Datum(impath=impath, label=label, domain=domain)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
Reference in New Issue
Block a user