release code
This commit is contained in:
@@ -0,0 +1,3 @@
|
||||
from .svhn import SVHN
|
||||
from .cifar import CIFAR10, CIFAR100
|
||||
from .stl10 import STL10
|
||||
108
Dassl.ProGrad.pytorch/dassl/data/datasets/ssl/cifar.py
Normal file
108
Dassl.ProGrad.pytorch/dassl/data/datasets/ssl/cifar.py
Normal file
@@ -0,0 +1,108 @@
|
||||
import math
|
||||
import random
|
||||
import os.path as osp
|
||||
|
||||
from dassl.utils import listdir_nohidden
|
||||
|
||||
from ..build import DATASET_REGISTRY
|
||||
from ..base_dataset import Datum, DatasetBase
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class CIFAR10(DatasetBase):
|
||||
"""CIFAR10 for SSL.
|
||||
|
||||
Reference:
|
||||
- Krizhevsky. Learning Multiple Layers of Features
|
||||
from Tiny Images. Tech report.
|
||||
"""
|
||||
|
||||
dataset_dir = "cifar10"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = osp.join(root, self.dataset_dir)
|
||||
train_dir = osp.join(self.dataset_dir, "train")
|
||||
test_dir = osp.join(self.dataset_dir, "test")
|
||||
|
||||
assert cfg.DATASET.NUM_LABELED > 0
|
||||
|
||||
train_x, train_u, val = self._read_data_train(
|
||||
train_dir, cfg.DATASET.NUM_LABELED, cfg.DATASET.VAL_PERCENT
|
||||
)
|
||||
test = self._read_data_test(test_dir)
|
||||
|
||||
if cfg.DATASET.ALL_AS_UNLABELED:
|
||||
train_u = train_u + train_x
|
||||
|
||||
if len(val) == 0:
|
||||
val = None
|
||||
|
||||
super().__init__(train_x=train_x, train_u=train_u, val=val, test=test)
|
||||
|
||||
def _read_data_train(self, data_dir, num_labeled, val_percent):
|
||||
class_names = listdir_nohidden(data_dir)
|
||||
class_names.sort()
|
||||
num_labeled_per_class = num_labeled / len(class_names)
|
||||
items_x, items_u, items_v = [], [], []
|
||||
|
||||
for label, class_name in enumerate(class_names):
|
||||
class_dir = osp.join(data_dir, class_name)
|
||||
imnames = listdir_nohidden(class_dir)
|
||||
|
||||
# Split into train and val following Oliver et al. 2018
|
||||
# Set cfg.DATASET.VAL_PERCENT to 0 to not use val data
|
||||
num_val = math.floor(len(imnames) * val_percent)
|
||||
imnames_train = imnames[num_val:]
|
||||
imnames_val = imnames[:num_val]
|
||||
|
||||
# Note we do shuffle after split
|
||||
random.shuffle(imnames_train)
|
||||
|
||||
for i, imname in enumerate(imnames_train):
|
||||
impath = osp.join(class_dir, imname)
|
||||
item = Datum(impath=impath, label=label)
|
||||
|
||||
if (i + 1) <= num_labeled_per_class:
|
||||
items_x.append(item)
|
||||
|
||||
else:
|
||||
items_u.append(item)
|
||||
|
||||
for imname in imnames_val:
|
||||
impath = osp.join(class_dir, imname)
|
||||
item = Datum(impath=impath, label=label)
|
||||
items_v.append(item)
|
||||
|
||||
return items_x, items_u, items_v
|
||||
|
||||
def _read_data_test(self, data_dir):
|
||||
class_names = listdir_nohidden(data_dir)
|
||||
class_names.sort()
|
||||
items = []
|
||||
|
||||
for label, class_name in enumerate(class_names):
|
||||
class_dir = osp.join(data_dir, class_name)
|
||||
imnames = listdir_nohidden(class_dir)
|
||||
|
||||
for imname in imnames:
|
||||
impath = osp.join(class_dir, imname)
|
||||
item = Datum(impath=impath, label=label)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class CIFAR100(CIFAR10):
|
||||
"""CIFAR100 for SSL.
|
||||
|
||||
Reference:
|
||||
- Krizhevsky. Learning Multiple Layers of Features
|
||||
from Tiny Images. Tech report.
|
||||
"""
|
||||
|
||||
dataset_dir = "cifar100"
|
||||
|
||||
def __init__(self, cfg):
|
||||
super().__init__(cfg)
|
||||
87
Dassl.ProGrad.pytorch/dassl/data/datasets/ssl/stl10.py
Normal file
87
Dassl.ProGrad.pytorch/dassl/data/datasets/ssl/stl10.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import numpy as np
|
||||
import os.path as osp
|
||||
|
||||
from dassl.utils import listdir_nohidden
|
||||
|
||||
from ..build import DATASET_REGISTRY
|
||||
from ..base_dataset import Datum, DatasetBase
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class STL10(DatasetBase):
|
||||
"""STL-10 dataset.
|
||||
|
||||
Description:
|
||||
- 10 classes: airplane, bird, car, cat, deer, dog, horse,
|
||||
monkey, ship, truck.
|
||||
- Images are 96x96 pixels, color.
|
||||
- 500 training images per class, 800 test images per class.
|
||||
- 100,000 unlabeled images for unsupervised learning.
|
||||
|
||||
Reference:
|
||||
- Coates et al. An Analysis of Single Layer Networks in
|
||||
Unsupervised Feature Learning. AISTATS 2011.
|
||||
"""
|
||||
|
||||
dataset_dir = "stl10"
|
||||
|
||||
def __init__(self, cfg):
|
||||
root = osp.abspath(osp.expanduser(cfg.DATASET.ROOT))
|
||||
self.dataset_dir = osp.join(root, self.dataset_dir)
|
||||
train_dir = osp.join(self.dataset_dir, "train")
|
||||
test_dir = osp.join(self.dataset_dir, "test")
|
||||
unlabeled_dir = osp.join(self.dataset_dir, "unlabeled")
|
||||
fold_file = osp.join(
|
||||
self.dataset_dir, "stl10_binary", "fold_indices.txt"
|
||||
)
|
||||
|
||||
# Only use the first five splits
|
||||
assert 0 <= cfg.DATASET.STL10_FOLD <= 4
|
||||
|
||||
train_x = self._read_data_train(
|
||||
train_dir, cfg.DATASET.STL10_FOLD, fold_file
|
||||
)
|
||||
train_u = self._read_data_all(unlabeled_dir)
|
||||
test = self._read_data_all(test_dir)
|
||||
|
||||
if cfg.DATASET.ALL_AS_UNLABELED:
|
||||
train_u = train_u + train_x
|
||||
|
||||
super().__init__(train_x=train_x, train_u=train_u, test=test)
|
||||
|
||||
def _read_data_train(self, data_dir, fold, fold_file):
|
||||
imnames = listdir_nohidden(data_dir)
|
||||
imnames.sort()
|
||||
items = []
|
||||
|
||||
list_idx = list(range(len(imnames)))
|
||||
if fold >= 0:
|
||||
with open(fold_file, "r") as f:
|
||||
str_idx = f.read().splitlines()[fold]
|
||||
list_idx = np.fromstring(str_idx, dtype=np.uint8, sep=" ")
|
||||
|
||||
for i in list_idx:
|
||||
imname = imnames[i]
|
||||
impath = osp.join(data_dir, imname)
|
||||
label = osp.splitext(imname)[0].split("_")[1]
|
||||
label = int(label)
|
||||
item = Datum(impath=impath, label=label)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
|
||||
def _read_data_all(self, data_dir):
|
||||
imnames = listdir_nohidden(data_dir)
|
||||
items = []
|
||||
|
||||
for imname in imnames:
|
||||
impath = osp.join(data_dir, imname)
|
||||
label = osp.splitext(imname)[0].split("_")[1]
|
||||
if label == "none":
|
||||
label = -1
|
||||
else:
|
||||
label = int(label)
|
||||
item = Datum(impath=impath, label=label)
|
||||
items.append(item)
|
||||
|
||||
return items
|
||||
17
Dassl.ProGrad.pytorch/dassl/data/datasets/ssl/svhn.py
Normal file
17
Dassl.ProGrad.pytorch/dassl/data/datasets/ssl/svhn.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from .cifar import CIFAR10
|
||||
from ..build import DATASET_REGISTRY
|
||||
|
||||
|
||||
@DATASET_REGISTRY.register()
|
||||
class SVHN(CIFAR10):
|
||||
"""SVHN for SSL.
|
||||
|
||||
Reference:
|
||||
- Netzer et al. Reading Digits in Natural Images with
|
||||
Unsupervised Feature Learning. NIPS-W 2011.
|
||||
"""
|
||||
|
||||
dataset_dir = "svhn"
|
||||
|
||||
def __init__(self, cfg):
|
||||
super().__init__(cfg)
|
||||
Reference in New Issue
Block a user