release code
This commit is contained in:
34
Dassl.ProGrad.pytorch/dassl/engine/da/source_only.py
Normal file
34
Dassl.ProGrad.pytorch/dassl/engine/da/source_only.py
Normal file
@@ -0,0 +1,34 @@
|
||||
from torch.nn import functional as F
|
||||
|
||||
from dassl.engine import TRAINER_REGISTRY, TrainerXU
|
||||
from dassl.metrics import compute_accuracy
|
||||
|
||||
|
||||
@TRAINER_REGISTRY.register()
|
||||
class SourceOnly(TrainerXU):
|
||||
"""Baseline model for domain adaptation, which is
|
||||
trained using source data only.
|
||||
"""
|
||||
|
||||
def forward_backward(self, batch_x, batch_u):
|
||||
input, label = self.parse_batch_train(batch_x, batch_u)
|
||||
output = self.model(input)
|
||||
loss = F.cross_entropy(output, label)
|
||||
self.model_backward_and_update(loss)
|
||||
|
||||
loss_summary = {
|
||||
"loss": loss.item(),
|
||||
"acc": compute_accuracy(output, label)[0].item(),
|
||||
}
|
||||
|
||||
if (self.batch_idx + 1) == self.num_batches:
|
||||
self.update_lr()
|
||||
|
||||
return loss_summary
|
||||
|
||||
def parse_batch_train(self, batch_x, batch_u):
|
||||
input = batch_x["img"]
|
||||
label = batch_x["label"]
|
||||
input = input.to(self.device)
|
||||
label = label.to(self.device)
|
||||
return input, label
|
||||
Reference in New Issue
Block a user