release code

This commit is contained in:
miunangel
2025-08-16 20:46:31 +08:00
commit 3dc26db3b9
277 changed files with 60106 additions and 0 deletions

View File

@@ -0,0 +1,4 @@
from .accuracy import compute_accuracy
from .distance import (
cosine_distance, compute_distance_matrix, euclidean_squared_distance
)

View File

@@ -0,0 +1,30 @@
def compute_accuracy(output, target, topk=(1, )):
"""Computes the accuracy over the k top predictions for
the specified values of k.
Args:
output (torch.Tensor): prediction matrix with shape (batch_size, num_classes).
target (torch.LongTensor): ground truth labels with shape (batch_size).
topk (tuple, optional): accuracy at top-k will be computed. For example,
topk=(1, 5) means accuracy at top-1 and top-5 will be computed.
Returns:
list: accuracy at top-k.
"""
maxk = max(topk)
batch_size = target.size(0)
if isinstance(output, (tuple, list)):
output = output[0]
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
acc = correct_k.mul_(100.0 / batch_size)
res.append(acc)
return res

View File

@@ -0,0 +1,77 @@
"""
Source: https://github.com/KaiyangZhou/deep-person-reid
"""
import torch
from torch.nn import functional as F
def compute_distance_matrix(input1, input2, metric="euclidean"):
"""A wrapper function for computing distance matrix.
Each input matrix has the shape (n_data, feature_dim).
Args:
input1 (torch.Tensor): 2-D feature matrix.
input2 (torch.Tensor): 2-D feature matrix.
metric (str, optional): "euclidean" or "cosine".
Default is "euclidean".
Returns:
torch.Tensor: distance matrix.
"""
# check input
assert isinstance(input1, torch.Tensor)
assert isinstance(input2, torch.Tensor)
assert input1.dim() == 2, "Expected 2-D tensor, but got {}-D".format(
input1.dim()
)
assert input2.dim() == 2, "Expected 2-D tensor, but got {}-D".format(
input2.dim()
)
assert input1.size(1) == input2.size(1)
if metric == "euclidean":
distmat = euclidean_squared_distance(input1, input2)
elif metric == "cosine":
distmat = cosine_distance(input1, input2)
else:
raise ValueError(
"Unknown distance metric: {}. "
'Please choose either "euclidean" or "cosine"'.format(metric)
)
return distmat
def euclidean_squared_distance(input1, input2):
"""Computes euclidean squared distance.
Args:
input1 (torch.Tensor): 2-D feature matrix.
input2 (torch.Tensor): 2-D feature matrix.
Returns:
torch.Tensor: distance matrix.
"""
m, n = input1.size(0), input2.size(0)
mat1 = torch.pow(input1, 2).sum(dim=1, keepdim=True).expand(m, n)
mat2 = torch.pow(input2, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat = mat1 + mat2
distmat.addmm_(1, -2, input1, input2.t())
return distmat
def cosine_distance(input1, input2):
"""Computes cosine distance.
Args:
input1 (torch.Tensor): 2-D feature matrix.
input2 (torch.Tensor): 2-D feature matrix.
Returns:
torch.Tensor: distance matrix.
"""
input1_normed = F.normalize(input1, p=2, dim=1)
input2_normed = F.normalize(input2, p=2, dim=1)
distmat = 1 - torch.mm(input1_normed, input2_normed.t())
return distmat