release code

This commit is contained in:
miunangel
2025-08-16 20:46:31 +08:00
commit 3dc26db3b9
277 changed files with 60106 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
from .optimizer import build_optimizer
from .lr_scheduler import build_lr_scheduler

View File

@@ -0,0 +1,154 @@
"""
Modified from https://github.com/KaiyangZhou/deep-person-reid
"""
import torch
from torch.optim.lr_scheduler import _LRScheduler
AVAI_SCHEDS = ["single_step", "multi_step", "cosine"]
class _BaseWarmupScheduler(_LRScheduler):
def __init__(
self,
optimizer,
successor,
warmup_epoch,
last_epoch=-1,
verbose=False
):
self.successor = successor
self.warmup_epoch = warmup_epoch
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self):
raise NotImplementedError
def step(self, epoch=None):
if self.last_epoch >= self.warmup_epoch:
self.successor.step(epoch)
self._last_lr = self.successor.get_last_lr()
else:
super().step(epoch)
class ConstantWarmupScheduler(_BaseWarmupScheduler):
def __init__(
self,
optimizer,
successor,
warmup_epoch,
cons_lr,
last_epoch=-1,
verbose=False
):
self.cons_lr = cons_lr
super().__init__(
optimizer, successor, warmup_epoch, last_epoch, verbose
)
def get_lr(self):
if self.last_epoch >= self.warmup_epoch:
return self.successor.get_last_lr()
return [self.cons_lr for _ in self.base_lrs]
class LinearWarmupScheduler(_BaseWarmupScheduler):
def __init__(
self,
optimizer,
successor,
warmup_epoch,
min_lr,
last_epoch=-1,
verbose=False
):
self.min_lr = min_lr
super().__init__(
optimizer, successor, warmup_epoch, last_epoch, verbose
)
def get_lr(self):
if self.last_epoch >= self.warmup_epoch:
return self.successor.get_last_lr()
if self.last_epoch == 0:
return [self.min_lr for _ in self.base_lrs]
return [
lr * self.last_epoch / self.warmup_epoch for lr in self.base_lrs
]
def build_lr_scheduler(optimizer, optim_cfg):
"""A function wrapper for building a learning rate scheduler.
Args:
optimizer (Optimizer): an Optimizer.
optim_cfg (CfgNode): optimization config.
"""
lr_scheduler = optim_cfg.LR_SCHEDULER
stepsize = optim_cfg.STEPSIZE
gamma = optim_cfg.GAMMA
max_epoch = optim_cfg.MAX_EPOCH
if lr_scheduler not in AVAI_SCHEDS:
raise ValueError(
"Unsupported scheduler: {}. Must be one of {}".format(
lr_scheduler, AVAI_SCHEDS
)
)
if lr_scheduler == "single_step":
if isinstance(stepsize, (list, tuple)):
stepsize = stepsize[-1]
if not isinstance(stepsize, int):
raise TypeError(
"For single_step lr_scheduler, stepsize must "
"be an integer, but got {}".format(type(stepsize))
)
if stepsize <= 0:
stepsize = max_epoch
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=stepsize, gamma=gamma
)
elif lr_scheduler == "multi_step":
if not isinstance(stepsize, (list, tuple)):
raise TypeError(
"For multi_step lr_scheduler, stepsize must "
"be a list, but got {}".format(type(stepsize))
)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=stepsize, gamma=gamma
)
elif lr_scheduler == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, float(max_epoch)
)
if optim_cfg.WARMUP_EPOCH > 0:
if not optim_cfg.WARMUP_RECOUNT:
scheduler.last_epoch = optim_cfg.WARMUP_EPOCH
if optim_cfg.WARMUP_TYPE == "constant":
scheduler = ConstantWarmupScheduler(
optimizer, scheduler, optim_cfg.WARMUP_EPOCH,
optim_cfg.WARMUP_CONS_LR
)
elif optim_cfg.WARMUP_TYPE == "linear":
scheduler = LinearWarmupScheduler(
optimizer, scheduler, optim_cfg.WARMUP_EPOCH,
optim_cfg.WARMUP_MIN_LR
)
else:
raise ValueError
return scheduler

View File

@@ -0,0 +1,136 @@
"""
Modified from https://github.com/KaiyangZhou/deep-person-reid
"""
import warnings
import torch
import torch.nn as nn
from .radam import RAdam
AVAI_OPTIMS = ["adam", "amsgrad", "sgd", "rmsprop", "radam", "adamw"]
def build_optimizer(model, optim_cfg):
"""A function wrapper for building an optimizer.
Args:
model (nn.Module or iterable): model.
optim_cfg (CfgNode): optimization config.
"""
optim = optim_cfg.NAME
lr = optim_cfg.LR
weight_decay = optim_cfg.WEIGHT_DECAY
momentum = optim_cfg.MOMENTUM
sgd_dampening = optim_cfg.SGD_DAMPNING
sgd_nesterov = optim_cfg.SGD_NESTEROV
rmsprop_alpha = optim_cfg.RMSPROP_ALPHA
adam_beta1 = optim_cfg.ADAM_BETA1
adam_beta2 = optim_cfg.ADAM_BETA2
staged_lr = optim_cfg.STAGED_LR
new_layers = optim_cfg.NEW_LAYERS
base_lr_mult = optim_cfg.BASE_LR_MULT
if optim not in AVAI_OPTIMS:
raise ValueError(
"Unsupported optim: {}. Must be one of {}".format(
optim, AVAI_OPTIMS
)
)
if staged_lr:
if not isinstance(model, nn.Module):
raise TypeError(
"When staged_lr is True, model given to "
"build_optimizer() must be an instance of nn.Module"
)
if isinstance(model, nn.DataParallel):
model = model.module
if isinstance(new_layers, str):
if new_layers is None:
warnings.warn(
"new_layers is empty, therefore, staged_lr is useless"
)
new_layers = [new_layers]
base_params = []
base_layers = []
new_params = []
for name, module in model.named_children():
if name in new_layers:
new_params += [p for p in module.parameters()]
else:
base_params += [p for p in module.parameters()]
base_layers.append(name)
param_groups = [
{
"params": base_params,
"lr": lr * base_lr_mult
},
{
"params": new_params
},
]
else:
if isinstance(model, nn.Module):
param_groups = model.parameters()
else:
param_groups = model
if optim == "adam":
optimizer = torch.optim.Adam(
param_groups,
lr=lr,
weight_decay=weight_decay,
betas=(adam_beta1, adam_beta2),
)
elif optim == "amsgrad":
optimizer = torch.optim.Adam(
param_groups,
lr=lr,
weight_decay=weight_decay,
betas=(adam_beta1, adam_beta2),
amsgrad=True,
)
elif optim == "sgd":
optimizer = torch.optim.SGD(
param_groups,
lr=lr,
momentum=momentum,
weight_decay=weight_decay,
dampening=sgd_dampening,
nesterov=sgd_nesterov,
)
elif optim == "rmsprop":
optimizer = torch.optim.RMSprop(
param_groups,
lr=lr,
momentum=momentum,
weight_decay=weight_decay,
alpha=rmsprop_alpha,
)
elif optim == "radam":
optimizer = RAdam(
param_groups,
lr=lr,
weight_decay=weight_decay,
betas=(adam_beta1, adam_beta2),
)
elif optim == "adamw":
optimizer = torch.optim.AdamW(
param_groups,
lr=lr,
weight_decay=weight_decay,
betas=(adam_beta1, adam_beta2),
)
return optimizer

View File

@@ -0,0 +1,332 @@
"""
Imported from: https://github.com/LiyuanLucasLiu/RAdam
https://arxiv.org/abs/1908.03265
@article{liu2019radam,
title={On the Variance of the Adaptive Learning Rate and Beyond},
author={Liu, Liyuan and Jiang, Haoming and He, Pengcheng and Chen, Weizhu and Liu, Xiaodong and Gao, Jianfeng and Han, Jiawei},
journal={arXiv preprint arXiv:1908.03265},
year={2019}
}
"""
import math
import torch
from torch.optim.optimizer import Optimizer
class RAdam(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
degenerated_to_sgd=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1])
)
self.degenerated_to_sgd = degenerated_to_sgd
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.buffer = [[None, None, None] for ind in range(10)]
super(RAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(RAdam, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"RAdam does not support sparse gradients"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state["step"] += 1
buffered = self.buffer[int(state["step"] % 10)]
if state["step"] == buffered[0]:
N_sma, step_size = buffered[1], buffered[2]
else:
buffered[0] = state["step"]
beta2_t = beta2**state["step"]
N_sma_max = 2 / (1-beta2) - 1
N_sma = N_sma_max - 2 * state["step"
] * beta2_t / (1-beta2_t)
buffered[1] = N_sma
# more conservative since it's an approximated value
if N_sma >= 5:
step_size = math.sqrt(
(1-beta2_t) * (N_sma-4) / (N_sma_max-4) *
(N_sma-2) / N_sma * N_sma_max / (N_sma_max-2)
) / (1 - beta1**state["step"])
elif self.degenerated_to_sgd:
step_size = 1.0 / (1 - beta1**state["step"])
else:
step_size = -1
buffered[2] = step_size
# more conservative since it's an approximated value
if N_sma >= 5:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
denom = exp_avg_sq.sqrt().add_(group["eps"])
p_data_fp32.addcdiv_(
-step_size * group["lr"], exp_avg, denom
)
p.data.copy_(p_data_fp32)
elif step_size > 0:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
p_data_fp32.add_(-step_size * group["lr"], exp_avg)
p.data.copy_(p_data_fp32)
return loss
class PlainRAdam(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
degenerated_to_sgd=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1])
)
self.degenerated_to_sgd = degenerated_to_sgd
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(PlainRAdam, self).__init__(params, defaults)
def __setstate__(self, state):
super(PlainRAdam, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"RAdam does not support sparse gradients"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
state["step"] += 1
beta2_t = beta2**state["step"]
N_sma_max = 2 / (1-beta2) - 1
N_sma = N_sma_max - 2 * state["step"] * beta2_t / (1-beta2_t)
# more conservative since it's an approximated value
if N_sma >= 5:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
step_size = (
group["lr"] * math.sqrt(
(1-beta2_t) * (N_sma-4) / (N_sma_max-4) *
(N_sma-2) / N_sma * N_sma_max / (N_sma_max-2)
) / (1 - beta1**state["step"])
)
denom = exp_avg_sq.sqrt().add_(group["eps"])
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
p.data.copy_(p_data_fp32)
elif self.degenerated_to_sgd:
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * group["lr"], p_data_fp32
)
step_size = group["lr"] / (1 - beta1**state["step"])
p_data_fp32.add_(-step_size, exp_avg)
p.data.copy_(p_data_fp32)
return loss
class AdamW(Optimizer):
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
warmup=0
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1])
)
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
warmup=warmup
)
super(AdamW, self).__init__(params, defaults)
def __setstate__(self, state):
super(AdamW, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
"Adam does not support sparse gradients, please consider SparseAdam instead"
)
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state["step"] = 0
state["exp_avg"] = torch.zeros_like(p_data_fp32)
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].type_as(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].type_as(
p_data_fp32
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
exp_avg.mul_(beta1).add_(1 - beta1, grad)
denom = exp_avg_sq.sqrt().add_(group["eps"])
bias_correction1 = 1 - beta1**state["step"]
bias_correction2 = 1 - beta2**state["step"]
if group["warmup"] > state["step"]:
scheduled_lr = 1e-8 + state["step"] * group["lr"] / group[
"warmup"]
else:
scheduled_lr = group["lr"]
step_size = (
scheduled_lr * math.sqrt(bias_correction2) /
bias_correction1
)
if group["weight_decay"] != 0:
p_data_fp32.add_(
-group["weight_decay"] * scheduled_lr, p_data_fp32
)
p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
p.data.copy_(p_data_fp32)
return loss