release code
This commit is contained in:
154
Dassl.ProGrad.pytorch/dassl/optim/lr_scheduler.py
Normal file
154
Dassl.ProGrad.pytorch/dassl/optim/lr_scheduler.py
Normal file
@@ -0,0 +1,154 @@
|
||||
"""
|
||||
Modified from https://github.com/KaiyangZhou/deep-person-reid
|
||||
"""
|
||||
import torch
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
|
||||
AVAI_SCHEDS = ["single_step", "multi_step", "cosine"]
|
||||
|
||||
|
||||
class _BaseWarmupScheduler(_LRScheduler):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
successor,
|
||||
warmup_epoch,
|
||||
last_epoch=-1,
|
||||
verbose=False
|
||||
):
|
||||
self.successor = successor
|
||||
self.warmup_epoch = warmup_epoch
|
||||
super().__init__(optimizer, last_epoch, verbose)
|
||||
|
||||
def get_lr(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def step(self, epoch=None):
|
||||
if self.last_epoch >= self.warmup_epoch:
|
||||
self.successor.step(epoch)
|
||||
self._last_lr = self.successor.get_last_lr()
|
||||
else:
|
||||
super().step(epoch)
|
||||
|
||||
|
||||
class ConstantWarmupScheduler(_BaseWarmupScheduler):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
successor,
|
||||
warmup_epoch,
|
||||
cons_lr,
|
||||
last_epoch=-1,
|
||||
verbose=False
|
||||
):
|
||||
self.cons_lr = cons_lr
|
||||
super().__init__(
|
||||
optimizer, successor, warmup_epoch, last_epoch, verbose
|
||||
)
|
||||
|
||||
def get_lr(self):
|
||||
if self.last_epoch >= self.warmup_epoch:
|
||||
return self.successor.get_last_lr()
|
||||
return [self.cons_lr for _ in self.base_lrs]
|
||||
|
||||
|
||||
class LinearWarmupScheduler(_BaseWarmupScheduler):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
successor,
|
||||
warmup_epoch,
|
||||
min_lr,
|
||||
last_epoch=-1,
|
||||
verbose=False
|
||||
):
|
||||
self.min_lr = min_lr
|
||||
super().__init__(
|
||||
optimizer, successor, warmup_epoch, last_epoch, verbose
|
||||
)
|
||||
|
||||
def get_lr(self):
|
||||
if self.last_epoch >= self.warmup_epoch:
|
||||
return self.successor.get_last_lr()
|
||||
if self.last_epoch == 0:
|
||||
return [self.min_lr for _ in self.base_lrs]
|
||||
return [
|
||||
lr * self.last_epoch / self.warmup_epoch for lr in self.base_lrs
|
||||
]
|
||||
|
||||
|
||||
def build_lr_scheduler(optimizer, optim_cfg):
|
||||
"""A function wrapper for building a learning rate scheduler.
|
||||
|
||||
Args:
|
||||
optimizer (Optimizer): an Optimizer.
|
||||
optim_cfg (CfgNode): optimization config.
|
||||
"""
|
||||
lr_scheduler = optim_cfg.LR_SCHEDULER
|
||||
stepsize = optim_cfg.STEPSIZE
|
||||
gamma = optim_cfg.GAMMA
|
||||
max_epoch = optim_cfg.MAX_EPOCH
|
||||
|
||||
if lr_scheduler not in AVAI_SCHEDS:
|
||||
raise ValueError(
|
||||
"Unsupported scheduler: {}. Must be one of {}".format(
|
||||
lr_scheduler, AVAI_SCHEDS
|
||||
)
|
||||
)
|
||||
|
||||
if lr_scheduler == "single_step":
|
||||
if isinstance(stepsize, (list, tuple)):
|
||||
stepsize = stepsize[-1]
|
||||
|
||||
if not isinstance(stepsize, int):
|
||||
raise TypeError(
|
||||
"For single_step lr_scheduler, stepsize must "
|
||||
"be an integer, but got {}".format(type(stepsize))
|
||||
)
|
||||
|
||||
if stepsize <= 0:
|
||||
stepsize = max_epoch
|
||||
|
||||
scheduler = torch.optim.lr_scheduler.StepLR(
|
||||
optimizer, step_size=stepsize, gamma=gamma
|
||||
)
|
||||
|
||||
elif lr_scheduler == "multi_step":
|
||||
if not isinstance(stepsize, (list, tuple)):
|
||||
raise TypeError(
|
||||
"For multi_step lr_scheduler, stepsize must "
|
||||
"be a list, but got {}".format(type(stepsize))
|
||||
)
|
||||
|
||||
scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||
optimizer, milestones=stepsize, gamma=gamma
|
||||
)
|
||||
|
||||
elif lr_scheduler == "cosine":
|
||||
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
|
||||
optimizer, float(max_epoch)
|
||||
)
|
||||
|
||||
if optim_cfg.WARMUP_EPOCH > 0:
|
||||
if not optim_cfg.WARMUP_RECOUNT:
|
||||
scheduler.last_epoch = optim_cfg.WARMUP_EPOCH
|
||||
|
||||
if optim_cfg.WARMUP_TYPE == "constant":
|
||||
scheduler = ConstantWarmupScheduler(
|
||||
optimizer, scheduler, optim_cfg.WARMUP_EPOCH,
|
||||
optim_cfg.WARMUP_CONS_LR
|
||||
)
|
||||
|
||||
elif optim_cfg.WARMUP_TYPE == "linear":
|
||||
scheduler = LinearWarmupScheduler(
|
||||
optimizer, scheduler, optim_cfg.WARMUP_EPOCH,
|
||||
optim_cfg.WARMUP_MIN_LR
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError
|
||||
|
||||
return scheduler
|
||||
Reference in New Issue
Block a user