release code
This commit is contained in:
80
Dassl.ProGrad.pytorch/dassl/utils/meters.py
Normal file
80
Dassl.ProGrad.pytorch/dassl/utils/meters.py
Normal file
@@ -0,0 +1,80 @@
|
||||
from collections import defaultdict
|
||||
import torch
|
||||
|
||||
__all__ = ["AverageMeter", "MetricMeter"]
|
||||
|
||||
|
||||
class AverageMeter:
|
||||
"""Compute and store the average and current value.
|
||||
|
||||
Examples::
|
||||
>>> # 1. Initialize a meter to record loss
|
||||
>>> losses = AverageMeter()
|
||||
>>> # 2. Update meter after every mini-batch update
|
||||
>>> losses.update(loss_value, batch_size)
|
||||
"""
|
||||
|
||||
def __init__(self, ema=False):
|
||||
"""
|
||||
Args:
|
||||
ema (bool, optional): apply exponential moving average.
|
||||
"""
|
||||
self.ema = ema
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.val = 0
|
||||
self.avg = 0
|
||||
self.sum = 0
|
||||
self.count = 0
|
||||
|
||||
def update(self, val, n=1):
|
||||
if isinstance(val, torch.Tensor):
|
||||
val = val.item()
|
||||
|
||||
self.val = val
|
||||
self.sum += val * n
|
||||
self.count += n
|
||||
|
||||
if self.ema:
|
||||
self.avg = self.avg * 0.9 + self.val * 0.1
|
||||
else:
|
||||
self.avg = self.sum / self.count
|
||||
|
||||
|
||||
class MetricMeter:
|
||||
"""Store the average and current value for a set of metrics.
|
||||
|
||||
Examples::
|
||||
>>> # 1. Create an instance of MetricMeter
|
||||
>>> metric = MetricMeter()
|
||||
>>> # 2. Update using a dictionary as input
|
||||
>>> input_dict = {'loss_1': value_1, 'loss_2': value_2}
|
||||
>>> metric.update(input_dict)
|
||||
>>> # 3. Convert to string and print
|
||||
>>> print(str(metric))
|
||||
"""
|
||||
|
||||
def __init__(self, delimiter="\t"):
|
||||
self.meters = defaultdict(AverageMeter)
|
||||
self.delimiter = delimiter
|
||||
|
||||
def update(self, input_dict):
|
||||
if input_dict is None:
|
||||
return
|
||||
|
||||
if not isinstance(input_dict, dict):
|
||||
raise TypeError(
|
||||
"Input to MetricMeter.update() must be a dictionary"
|
||||
)
|
||||
|
||||
for k, v in input_dict.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
v = v.item()
|
||||
self.meters[k].update(v)
|
||||
|
||||
def __str__(self):
|
||||
output_str = []
|
||||
for name, meter in self.meters.items():
|
||||
output_str.append(f"{name} {meter.val:.4f} ({meter.avg:.4f})")
|
||||
return self.delimiter.join(output_str)
|
||||
Reference in New Issue
Block a user