release code

This commit is contained in:
miunangel
2025-08-16 20:46:31 +08:00
commit 3dc26db3b9
277 changed files with 60106 additions and 0 deletions

View File

@@ -0,0 +1,181 @@
"""
Goal
---
1. Read test results from log.txt files
2. Compute mean and std across different folders (seeds)
Usage
---
Assume the output files are saved under output/my_experiment,
which contains results of different seeds, e.g.,
my_experiment/
seed1/
log.txt
seed2/
log.txt
seed3/
log.txt
Run the following command from the root directory:
$ python tools/parse_test_res.py output/my_experiment
Add --ci95 to the argument if you wanna get 95% confidence
interval instead of standard deviation:
$ python tools/parse_test_res.py output/my_experiment --ci95
If my_experiment/ has the following structure,
my_experiment/
exp-1/
seed1/
log.txt
...
seed2/
log.txt
...
seed3/
log.txt
...
exp-2/
...
exp-3/
...
Run
$ python tools/parse_test_res.py output/my_experiment --multi-exp
"""
import re
import numpy as np
import os.path as osp
import argparse
from collections import OrderedDict, defaultdict
from dassl.utils import check_isfile, listdir_nohidden
def compute_ci95(res):
return 1.96 * np.std(res) / np.sqrt(len(res))
def parse_function(*metrics, directory="", args=None, end_signal=None):
print(f"Parsing files in {directory}")
subdirs = listdir_nohidden(directory, sort=True)
outputs = []
for subdir in subdirs:
fpath = osp.join(directory, subdir, "log.txt")
assert check_isfile(fpath)
good_to_go = False
output = OrderedDict()
with open(fpath, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line == end_signal:
good_to_go = True
for metric in metrics:
match = metric["regex"].search(line)
if match and good_to_go:
if "file" not in output:
output["file"] = fpath
num = float(match.group(1))
name = metric["name"]
output[name] = num
if output:
outputs.append(output)
assert len(outputs) > 0, f"Nothing found in {directory}"
metrics_results = defaultdict(list)
for output in outputs:
msg = ""
for key, value in output.items():
if isinstance(value, float):
msg += f"{key}: {value:.2f}%. "
else:
msg += f"{key}: {value}. "
if key != "file":
metrics_results[key].append(value)
print(msg)
output_results = OrderedDict()
print("===")
print(f"Summary of directory: {directory}")
for key, values in metrics_results.items():
avg = np.mean(values)
std = compute_ci95(values) if args.ci95 else np.std(values)
print(f"* {key}: {avg:.2f}% +- {std:.2f}%")
output_results[key] = avg
print("===")
return output_results
def main(args, end_signal):
metric = {
"name": args.keyword,
"regex": re.compile(fr"\* {args.keyword}: ([\.\deE+-]+)%"),
}
if args.multi_exp:
final_results = defaultdict(list)
for directory in listdir_nohidden(args.directory, sort=True):
directory = osp.join(args.directory, directory)
results = parse_function(
metric, directory=directory, args=args, end_signal=end_signal
)
for key, value in results.items():
final_results[key].append(value)
print("Average performance")
for key, values in final_results.items():
avg = np.mean(values)
print(f"* {key}: {avg:.2f}%")
else:
parse_function(
metric, directory=args.directory, args=args, end_signal=end_signal
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("directory", type=str, help="path to directory")
parser.add_argument(
"--ci95",
action="store_true",
help=r"compute 95\% confidence interval"
)
parser.add_argument(
"--test-log", action="store_true", help="parse test-only logs"
)
parser.add_argument(
"--multi-exp", action="store_true", help="parse multiple experiments"
)
parser.add_argument(
"--keyword",
default="accuracy",
type=str,
help="which keyword to extract"
)
args = parser.parse_args()
end_signal = "Finished training"
if args.test_log:
end_signal = "=> result"
main(args, end_signal)

View File

@@ -0,0 +1,69 @@
"""
Replace text in python files.
"""
import glob
import os.path as osp
import argparse
import fileinput
EXTENSION = ".py"
def is_python_file(filename):
ext = osp.splitext(filename)[1]
return ext == EXTENSION
def update_file(filename, text_to_search, replacement_text):
print("Processing {}".format(filename))
with fileinput.FileInput(filename, inplace=True, backup="") as file:
for line in file:
print(line.replace(text_to_search, replacement_text), end="")
def recursive_update(directory, text_to_search, replacement_text):
filenames = glob.glob(osp.join(directory, "*"))
for filename in filenames:
if osp.isfile(filename):
if not is_python_file(filename):
continue
update_file(filename, text_to_search, replacement_text)
elif osp.isdir(filename):
recursive_update(filename, text_to_search, replacement_text)
else:
raise NotImplementedError
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"file_or_dir", type=str, help="path to file or directory"
)
parser.add_argument("text_to_search", type=str, help="name to be replaced")
parser.add_argument("replacement_text", type=str, help="new name")
parser.add_argument(
"--ext", type=str, default=".py", help="file extension"
)
args = parser.parse_args()
file_or_dir = args.file_or_dir
text_to_search = args.text_to_search
replacement_text = args.replacement_text
extension = args.ext
global EXTENSION
EXTENSION = extension
if osp.isfile(file_or_dir):
if not is_python_file(file_or_dir):
return
update_file(file_or_dir, text_to_search, replacement_text)
elif osp.isdir(file_or_dir):
recursive_update(file_or_dir, text_to_search, replacement_text)
else:
raise NotImplementedError
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,190 @@
import argparse
import torch
from dassl.utils import setup_logger, set_random_seed, collect_env_info
from dassl.config import get_cfg_default
from dassl.engine import build_trainer
def print_args(args, cfg):
print("***************")
print("** Arguments **")
print("***************")
optkeys = list(args.__dict__.keys())
optkeys.sort()
for key in optkeys:
print("{}: {}".format(key, args.__dict__[key]))
print("************")
print("** Config **")
print("************")
print(cfg)
def reset_cfg(cfg, args):
if args.root:
cfg.DATASET.ROOT = args.root
if args.output_dir:
cfg.OUTPUT_DIR = args.output_dir
if args.resume:
cfg.RESUME = args.resume
if args.seed:
cfg.SEED = args.seed
if args.source_domains:
cfg.DATASET.SOURCE_DOMAINS = args.source_domains
if args.target_domains:
cfg.DATASET.TARGET_DOMAINS = args.target_domains
if args.transforms:
cfg.INPUT.TRANSFORMS = args.transforms
if args.trainer:
cfg.TRAINER.NAME = args.trainer
if args.backbone:
cfg.MODEL.BACKBONE.NAME = args.backbone
if args.head:
cfg.MODEL.HEAD.NAME = args.head
def extend_cfg(cfg):
"""
Add new config variables.
E.g.
from yacs.config import CfgNode as CN
cfg.TRAINER.MY_MODEL = CN()
cfg.TRAINER.MY_MODEL.PARAM_A = 1.
cfg.TRAINER.MY_MODEL.PARAM_B = 0.5
cfg.TRAINER.MY_MODEL.PARAM_C = False
"""
pass
def setup_cfg(args):
cfg = get_cfg_default()
extend_cfg(cfg)
# 1. From the dataset config file
if args.dataset_config_file:
cfg.merge_from_file(args.dataset_config_file)
# 2. From the method config file
if args.config_file:
cfg.merge_from_file(args.config_file)
# 3. From input arguments
reset_cfg(cfg, args)
# 4. From optional input arguments
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def main(args):
cfg = setup_cfg(args)
if cfg.SEED >= 0:
print("Setting fixed seed: {}".format(cfg.SEED))
set_random_seed(cfg.SEED)
setup_logger(cfg.OUTPUT_DIR)
if torch.cuda.is_available() and cfg.USE_CUDA:
torch.backends.cudnn.benchmark = True
print_args(args, cfg)
print("Collecting env info ...")
print("** System info **\n{}\n".format(collect_env_info()))
trainer = build_trainer(cfg)
if args.eval_only:
trainer.load_model(args.model_dir, epoch=args.load_epoch)
trainer.test()
return
if not args.no_train:
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="", help="path to dataset")
parser.add_argument(
"--output-dir", type=str, default="", help="output directory"
)
parser.add_argument(
"--resume",
type=str,
default="",
help="checkpoint directory (from which the training resumes)",
)
parser.add_argument(
"--seed",
type=int,
default=-1,
help="only positive value enables a fixed seed"
)
parser.add_argument(
"--source-domains",
type=str,
nargs="+",
help="source domains for DA/DG"
)
parser.add_argument(
"--target-domains",
type=str,
nargs="+",
help="target domains for DA/DG"
)
parser.add_argument(
"--transforms", type=str, nargs="+", help="data augmentation methods"
)
parser.add_argument(
"--config-file", type=str, default="", help="path to config file"
)
parser.add_argument(
"--dataset-config-file",
type=str,
default="",
help="path to config file for dataset setup",
)
parser.add_argument(
"--trainer", type=str, default="", help="name of trainer"
)
parser.add_argument(
"--backbone", type=str, default="", help="name of CNN backbone"
)
parser.add_argument("--head", type=str, default="", help="name of head")
parser.add_argument(
"--eval-only", action="store_true", help="evaluation only"
)
parser.add_argument(
"--model-dir",
type=str,
default="",
help="load model from this directory for eval-only mode",
)
parser.add_argument(
"--load-epoch",
type=int,
help="load model weights at this epoch for evaluation"
)
parser.add_argument(
"--no-train", action="store_true", help="do not call trainer.train()"
)
parser.add_argument(
"opts",
default=None,
nargs=argparse.REMAINDER,
help="modify config options using the command-line",
)
args = parser.parse_args()
main(args)