release code
This commit is contained in:
181
Dassl.ProGrad.pytorch/tools/parse_test_res.py
Normal file
181
Dassl.ProGrad.pytorch/tools/parse_test_res.py
Normal file
@@ -0,0 +1,181 @@
|
||||
"""
|
||||
Goal
|
||||
---
|
||||
1. Read test results from log.txt files
|
||||
2. Compute mean and std across different folders (seeds)
|
||||
|
||||
Usage
|
||||
---
|
||||
Assume the output files are saved under output/my_experiment,
|
||||
which contains results of different seeds, e.g.,
|
||||
|
||||
my_experiment/
|
||||
seed1/
|
||||
log.txt
|
||||
seed2/
|
||||
log.txt
|
||||
seed3/
|
||||
log.txt
|
||||
|
||||
Run the following command from the root directory:
|
||||
|
||||
$ python tools/parse_test_res.py output/my_experiment
|
||||
|
||||
Add --ci95 to the argument if you wanna get 95% confidence
|
||||
interval instead of standard deviation:
|
||||
|
||||
$ python tools/parse_test_res.py output/my_experiment --ci95
|
||||
|
||||
If my_experiment/ has the following structure,
|
||||
|
||||
my_experiment/
|
||||
exp-1/
|
||||
seed1/
|
||||
log.txt
|
||||
...
|
||||
seed2/
|
||||
log.txt
|
||||
...
|
||||
seed3/
|
||||
log.txt
|
||||
...
|
||||
exp-2/
|
||||
...
|
||||
exp-3/
|
||||
...
|
||||
|
||||
Run
|
||||
|
||||
$ python tools/parse_test_res.py output/my_experiment --multi-exp
|
||||
"""
|
||||
import re
|
||||
import numpy as np
|
||||
import os.path as osp
|
||||
import argparse
|
||||
from collections import OrderedDict, defaultdict
|
||||
|
||||
from dassl.utils import check_isfile, listdir_nohidden
|
||||
|
||||
|
||||
def compute_ci95(res):
|
||||
return 1.96 * np.std(res) / np.sqrt(len(res))
|
||||
|
||||
|
||||
def parse_function(*metrics, directory="", args=None, end_signal=None):
|
||||
print(f"Parsing files in {directory}")
|
||||
subdirs = listdir_nohidden(directory, sort=True)
|
||||
|
||||
outputs = []
|
||||
|
||||
for subdir in subdirs:
|
||||
fpath = osp.join(directory, subdir, "log.txt")
|
||||
assert check_isfile(fpath)
|
||||
good_to_go = False
|
||||
output = OrderedDict()
|
||||
|
||||
with open(fpath, "r") as f:
|
||||
lines = f.readlines()
|
||||
|
||||
for line in lines:
|
||||
line = line.strip()
|
||||
|
||||
if line == end_signal:
|
||||
good_to_go = True
|
||||
|
||||
for metric in metrics:
|
||||
match = metric["regex"].search(line)
|
||||
if match and good_to_go:
|
||||
if "file" not in output:
|
||||
output["file"] = fpath
|
||||
num = float(match.group(1))
|
||||
name = metric["name"]
|
||||
output[name] = num
|
||||
|
||||
if output:
|
||||
outputs.append(output)
|
||||
|
||||
assert len(outputs) > 0, f"Nothing found in {directory}"
|
||||
|
||||
metrics_results = defaultdict(list)
|
||||
|
||||
for output in outputs:
|
||||
msg = ""
|
||||
for key, value in output.items():
|
||||
if isinstance(value, float):
|
||||
msg += f"{key}: {value:.2f}%. "
|
||||
else:
|
||||
msg += f"{key}: {value}. "
|
||||
if key != "file":
|
||||
metrics_results[key].append(value)
|
||||
print(msg)
|
||||
|
||||
output_results = OrderedDict()
|
||||
|
||||
print("===")
|
||||
print(f"Summary of directory: {directory}")
|
||||
for key, values in metrics_results.items():
|
||||
avg = np.mean(values)
|
||||
std = compute_ci95(values) if args.ci95 else np.std(values)
|
||||
print(f"* {key}: {avg:.2f}% +- {std:.2f}%")
|
||||
output_results[key] = avg
|
||||
print("===")
|
||||
|
||||
return output_results
|
||||
|
||||
|
||||
def main(args, end_signal):
|
||||
metric = {
|
||||
"name": args.keyword,
|
||||
"regex": re.compile(fr"\* {args.keyword}: ([\.\deE+-]+)%"),
|
||||
}
|
||||
|
||||
if args.multi_exp:
|
||||
final_results = defaultdict(list)
|
||||
|
||||
for directory in listdir_nohidden(args.directory, sort=True):
|
||||
directory = osp.join(args.directory, directory)
|
||||
results = parse_function(
|
||||
metric, directory=directory, args=args, end_signal=end_signal
|
||||
)
|
||||
|
||||
for key, value in results.items():
|
||||
final_results[key].append(value)
|
||||
|
||||
print("Average performance")
|
||||
for key, values in final_results.items():
|
||||
avg = np.mean(values)
|
||||
print(f"* {key}: {avg:.2f}%")
|
||||
|
||||
else:
|
||||
parse_function(
|
||||
metric, directory=args.directory, args=args, end_signal=end_signal
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("directory", type=str, help="path to directory")
|
||||
parser.add_argument(
|
||||
"--ci95",
|
||||
action="store_true",
|
||||
help=r"compute 95\% confidence interval"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test-log", action="store_true", help="parse test-only logs"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--multi-exp", action="store_true", help="parse multiple experiments"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--keyword",
|
||||
default="accuracy",
|
||||
type=str,
|
||||
help="which keyword to extract"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
end_signal = "Finished training"
|
||||
if args.test_log:
|
||||
end_signal = "=> result"
|
||||
|
||||
main(args, end_signal)
|
||||
Reference in New Issue
Block a user