1 Commits

Author SHA1 Message Date
miunangel
fa24c48109 Uncertain fuse 2026-02-01 20:52:22 +08:00
6 changed files with 192 additions and 2 deletions

View File

@@ -0,0 +1,39 @@
#!/bin/bash
TRAINER=$1
KG_WEIGHT=$2
MP_WEIGHT=$3
UNC_TEMPERATURE=$4
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} ucf101 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} ucf101 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} eurosat ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} eurosat ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} oxford_pets ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} oxford_pets ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} food101 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} food101 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} oxford_flowers ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} oxford_flowers ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} dtd ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} dtd ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} caltech101 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} caltech101 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} fgvc_aircraft ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} fgvc_aircraft ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} stanford_cars ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} stanford_cars ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} sun397 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} sun397 ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_train_unc.sh ${TRAINER} imagenet ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}
CUDA_VISIBLE_DEVICES=0 bash scripts/base2new_test_unc.sh ${TRAINER} imagenet ${KG_WEIGHT} ${MP_WEIGHT} ${UNC_TEMPERATURE}

View File

@@ -0,0 +1,51 @@
#!/bin/bash
# custom config
DATA=~/Datasets/CoOp
TRAINER=$1
DATASET=$2
N_PROMPTS=4
KG_WEIGHT=$3
MP_WEIGHT=$4
UNC_TEMPERATURE=$5
#CFG=rn50_ep100 # config file
CFG=vit_b16_ep100_ctxv1
CTP=end # class token position (end or middle)
NCTX=4 # number of context tokens
SHOTS=16 # number of shots (1, 2, 4, 8, 16)
CSC=False # class-specific context (False or True)
LOADEP=100
SUB=new
for SEED in 1 2 3
do
COMMON_DIR=${DATASET}/shots_${SHOTS}_${KG_WEIGHT}_unc${UNC_TEMPERATURE}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=output/base2new/train_base/${COMMON_DIR}
DIR=output/base2new/test_${SUB}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
TRAINER.COOP.N_PROMPTS ${N_PROMPTS} \
TRAINER.COOP.N_CTX ${NCTX} \
TRAINER.COOP.CSC ${CSC} \
TRAINER.COOP.CLASS_TOKEN_POSITION ${CTP} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB} \
TRAINER.COOP.UNC_ENABLED True \
TRAINER.COOP.UNC_TEMPERATURE ${UNC_TEMPERATURE}
fi
done

View File

@@ -0,0 +1,43 @@
#!/bin/bash
# custom config
DATA=~/Datasets/CoOp
TRAINER=$1
DATASET=$2
KG_WEIGHT=$3
MP_WEIGHT=$4
UNC_TEMPERATURE=$5
N_PROMPTS=4
#CFG=rn50_ep100 # config file
CFG=vit_b16_ep100_ctxv1
CTP=end # class token position (end or middle)
NCTX=4 # number of context tokens
SHOTS=16 # number of shots (1, 2, 4, 8, 16)
CSC=False # class-specific context (False or True)
for SEED in 1 2 3
do
DIR=output/base2new/train_base/${DATASET}/shots_${SHOTS}_${KG_WEIGHT}_unc${UNC_TEMPERATURE}/${TRAINER}/${CFG}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
TRAINER.COOP.N_CTX ${NCTX} \
TRAINER.COOP.CSC ${CSC} \
TRAINER.COOP.W ${KG_WEIGHT} \
TRAINER.COOP.CLASS_TOKEN_POSITION ${CTP} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base \
TRAINER.COOP.N_PROMPTS ${N_PROMPTS} \
TRAINER.COOP.DIV_WEIGHT ${MP_WEIGHT} \
TRAINER.COOP.UNC_ENABLED True \
TRAINER.COOP.UNC_TEMPERATURE ${UNC_TEMPERATURE}
fi
done

View File

@@ -106,6 +106,10 @@ def extend_cfg(cfg):
cfg.TRAINER.COOP.DIV_WEIGHT = 0.1
cfg.TRAINER.COOP.N_PROMPTS = 3
# 不确定性集成配置
cfg.TRAINER.COOP.UNC_ENABLED = False # 是否启用基于熵的不确定性集成
cfg.TRAINER.COOP.UNC_TEMPERATURE = 1.0 # 控制权重分布的平滑度
cfg.DATASET.SUBSAMPLE_CLASSES = "all" # all, base or new
"""
Add new config

View File

@@ -223,6 +223,41 @@ class Adapter(nn.Module):
x = self.fc(x)
return x
class UncertaintyPromptIntegrator(nn.Module):
def __init__(self, temperature=1.0):
"""
基于预测熵的不确定性加权集成器
Args:
temperature: 控制权重分布的平滑度,值越大权重分布越平均
"""
super().__init__()
self.temperature = temperature
def forward(self, all_logits):
"""
Args:
all_logits: [n_prompts, batch_size, n_classes]
Returns:
integrated_logits: [batch_size, n_classes]
prompt_weights: [n_prompts, batch_size]
entropy: [n_prompts, batch_size]
"""
n_prompts, batch_size, n_classes = all_logits.shape
log_probs = F.log_softmax(all_logits, dim=-1)
probs = log_probs.exp()
entropy = -(probs * log_probs).sum(dim=-1)
temperature = max(self.temperature, 1e-8)
weights = F.softmax(-entropy / temperature, dim=0)
integrated_logits = torch.einsum('pb,pbc->bc', weights, all_logits)
return integrated_logits, weights, entropy
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
@@ -237,6 +272,14 @@ class CustomCLIP(nn.Module):
self.meta_net = self.prompt_learner.meta_net
self.adapter = Adapter(512, 4).to(clip_model.dtype)
self.use_uncertainty_integration = cfg.TRAINER.COOP.get('UNC_ENABLED', False)
self.unc_temperature = cfg.TRAINER.COOP.get('UNC_TEMPERATURE', 1.0)
if self.use_uncertainty_integration:
self.unc_integrator = UncertaintyPromptIntegrator(
temperature=self.unc_temperature
)
def compute_diversity_loss(self, text_features):
if self.n_prompts == 1:
return torch.tensor(0.0, device=text_features.device)
@@ -284,7 +327,14 @@ class CustomCLIP(nn.Module):
logits_i = logit_scale * image_features @ text_features_i.t()
all_logits.append(logits_i)
logits = torch.stack(all_logits).mean(dim=0)
all_logits = torch.stack(all_logits)
if self.use_uncertainty_integration:
logits, prompt_weights, entropy = self.unc_integrator(all_logits)
self.last_prompt_weights = prompt_weights.detach()
self.last_entropy = entropy.detach()
else:
logits = all_logits.mean(dim=0)
return logits, score, diversity_loss

View File

@@ -1,5 +1,8 @@
# MSGCoOp: Visual-Language Prompt Tuning with Knowledge-guided Context Optimization
[![Paper](https://img.shields.io/badge/arXiv-Paper-brightgreen.svg)](https://arxiv.org/abs/2507.21786)
[![Code](https://img.shields.io/badge/Code-GitHub-blueviolet.svg)](https://github.com/Rain-Bus/MSGCoOp)
## Overview of MSGCoOp
We introduce **Multi-prompt Semantic-Guided Context Optimization (MSGCoOp)**, a novel framework that advances CLIP-based prompt tuning for few-shot learning. MSGCoOp addresses the challenge of generalizing to novel classes efficiently, without heavy architectural modifications or expensive computation.