""" This model is built based on https://github.com/ricvolpi/generalize-unseen-domains/blob/master/model.py """ import torch.nn as nn from torch.nn import functional as F from dassl.utils import init_network_weights from .build import BACKBONE_REGISTRY from .backbone import Backbone class CNN(Backbone): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 64, 5) self.conv2 = nn.Conv2d(64, 128, 5) self.fc3 = nn.Linear(5 * 5 * 128, 1024) self.fc4 = nn.Linear(1024, 1024) self._out_features = 1024 def _check_input(self, x): H, W = x.shape[2:] assert ( H == 32 and W == 32 ), "Input to network must be 32x32, " "but got {}x{}".format(H, W) def forward(self, x): self._check_input(x) x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = self.fc3(x) x = F.relu(x) x = self.fc4(x) x = F.relu(x) return x @BACKBONE_REGISTRY.register() def cnn_digitsingle(**kwargs): model = CNN() init_network_weights(model, init_type="kaiming") return model