import torch.utils.model_zoo as model_zoo from torch import nn from .build import BACKBONE_REGISTRY from .backbone import Backbone model_urls = { "mobilenet_v2": "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth", } def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor/2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNReLU(nn.Sequential): def __init__( self, in_planes, out_planes, kernel_size=3, stride=1, groups=1 ): padding = (kernel_size-1) // 2 super().__init__( nn.Conv2d( in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False, ), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True), ) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super().__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend( [ # dw ConvBNReLU( hidden_dim, hidden_dim, stride=stride, groups=hidden_dim ), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ] ) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(Backbone): def __init__( self, width_mult=1.0, inverted_residual_setting=None, round_nearest=8, block=None, ): """ MobileNet V2. Args: width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding block: Module specifying inverted residual building block for mobilenet """ super().__init__() if block is None: block = InvertedResidual input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if ( len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4 ): raise ValueError( "inverted_residual_setting should be non-empty " "or a 4-element list, got {}". format(inverted_residual_setting) ) # building first layer input_channel = _make_divisible( input_channel * width_mult, round_nearest ) self.last_channel = _make_divisible( last_channel * max(1.0, width_mult), round_nearest ) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append( block( input_channel, output_channel, stride, expand_ratio=t ) ) input_channel = output_channel # building last several layers features.append( ConvBNReLU(input_channel, self.last_channel, kernel_size=1) ) # make it nn.Sequential self.features = nn.Sequential(*features) self._out_features = self.last_channel # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out") if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def _forward_impl(self, x): # This exists since TorchScript doesn't support inheritance, so the superclass method # (this one) needs to have a name other than `forward` that can be accessed in a subclass x = self.features(x) x = x.mean([2, 3]) return x def forward(self, x): return self._forward_impl(x) def init_pretrained_weights(model, model_url): """Initializes model with pretrained weights. Layers that don't match with pretrained layers in name or size are kept unchanged. """ if model_url is None: import warnings warnings.warn( "ImageNet pretrained weights are unavailable for this model" ) return pretrain_dict = model_zoo.load_url(model_url) model_dict = model.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) model.load_state_dict(model_dict) @BACKBONE_REGISTRY.register() def mobilenetv2(pretrained=True, **kwargs): model = MobileNetV2(**kwargs) if pretrained: init_pretrained_weights(model, model_urls["mobilenet_v2"]) return model