import torch from torch.nn import functional as F from dassl.engine import TRAINER_REGISTRY, TrainerXU from dassl.metrics import compute_accuracy @TRAINER_REGISTRY.register() class EntMin(TrainerXU): """Entropy Minimization. http://papers.nips.cc/paper/2740-semi-supervised-learning-by-entropy-minimization.pdf. """ def __init__(self, cfg): super().__init__(cfg) self.lmda = cfg.TRAINER.ENTMIN.LMDA def forward_backward(self, batch_x, batch_u): input_x, label_x, input_u = self.parse_batch_train(batch_x, batch_u) output_x = self.model(input_x) loss_x = F.cross_entropy(output_x, label_x) output_u = F.softmax(self.model(input_u), 1) loss_u = (-output_u * torch.log(output_u + 1e-5)).sum(1).mean() loss = loss_x + loss_u * self.lmda self.model_backward_and_update(loss) loss_summary = { "loss_x": loss_x.item(), "acc_x": compute_accuracy(output_x, label_x)[0].item(), "loss_u": loss_u.item(), } if (self.batch_idx + 1) == self.num_batches: self.update_lr() return loss_summary