Files
2025-08-16 21:13:50 +08:00

78 lines
2.2 KiB
Python

"""
Source: https://github.com/KaiyangZhou/deep-person-reid
"""
import torch
from torch.nn import functional as F
def compute_distance_matrix(input1, input2, metric="euclidean"):
"""A wrapper function for computing distance matrix.
Each input matrix has the shape (n_data, feature_dim).
Args:
input1 (torch.Tensor): 2-D feature matrix.
input2 (torch.Tensor): 2-D feature matrix.
metric (str, optional): "euclidean" or "cosine".
Default is "euclidean".
Returns:
torch.Tensor: distance matrix.
"""
# check input
assert isinstance(input1, torch.Tensor)
assert isinstance(input2, torch.Tensor)
assert input1.dim() == 2, "Expected 2-D tensor, but got {}-D".format(
input1.dim()
)
assert input2.dim() == 2, "Expected 2-D tensor, but got {}-D".format(
input2.dim()
)
assert input1.size(1) == input2.size(1)
if metric == "euclidean":
distmat = euclidean_squared_distance(input1, input2)
elif metric == "cosine":
distmat = cosine_distance(input1, input2)
else:
raise ValueError(
"Unknown distance metric: {}. "
'Please choose either "euclidean" or "cosine"'.format(metric)
)
return distmat
def euclidean_squared_distance(input1, input2):
"""Computes euclidean squared distance.
Args:
input1 (torch.Tensor): 2-D feature matrix.
input2 (torch.Tensor): 2-D feature matrix.
Returns:
torch.Tensor: distance matrix.
"""
m, n = input1.size(0), input2.size(0)
mat1 = torch.pow(input1, 2).sum(dim=1, keepdim=True).expand(m, n)
mat2 = torch.pow(input2, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat = mat1 + mat2
distmat.addmm_(1, -2, input1, input2.t())
return distmat
def cosine_distance(input1, input2):
"""Computes cosine distance.
Args:
input1 (torch.Tensor): 2-D feature matrix.
input2 (torch.Tensor): 2-D feature matrix.
Returns:
torch.Tensor: distance matrix.
"""
input1_normed = F.normalize(input1, p=2, dim=1)
input2_normed = F.normalize(input2, p=2, dim=1)
distmat = 1 - torch.mm(input1_normed, input2_normed.t())
return distmat