Files
2025-08-16 21:13:50 +08:00

65 lines
1.9 KiB
Python

import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from .build import BACKBONE_REGISTRY
from .backbone import Backbone
model_urls = {
"alexnet": "https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth",
}
class AlexNet(Backbone):
def __init__(self):
super().__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
# Note that self.classifier outputs features rather than logits
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
)
self._out_features = 4096
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
return self.classifier(x)
def init_pretrained_weights(model, model_url):
pretrain_dict = model_zoo.load_url(model_url)
model.load_state_dict(pretrain_dict, strict=False)
@BACKBONE_REGISTRY.register()
def alexnet(pretrained=True, **kwargs):
model = AlexNet()
if pretrained:
init_pretrained_weights(model, model_urls["alexnet"])
return model