Files
2025-08-16 21:13:50 +08:00

59 lines
1.8 KiB
Python

"""
Reference
https://github.com/VisionLearningGroup/VisionLearningGroup.github.io/tree/master/M3SDA
"""
import torch.nn as nn
from torch.nn import functional as F
from .build import BACKBONE_REGISTRY
from .backbone import Backbone
class FeatureExtractor(Backbone):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=5, stride=1, padding=2)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 64, kernel_size=5, stride=1, padding=2)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2)
self.bn3 = nn.BatchNorm2d(128)
self.fc1 = nn.Linear(8192, 3072)
self.bn1_fc = nn.BatchNorm1d(3072)
self.fc2 = nn.Linear(3072, 2048)
self.bn2_fc = nn.BatchNorm1d(2048)
self._out_features = 2048
def _check_input(self, x):
H, W = x.shape[2:]
assert (
H == 32 and W == 32
), "Input to network must be 32x32, " "but got {}x{}".format(H, W)
def forward(self, x):
self._check_input(x)
x = F.relu(self.bn1(self.conv1(x)))
x = F.max_pool2d(x, stride=2, kernel_size=3, padding=1)
x = F.relu(self.bn2(self.conv2(x)))
x = F.max_pool2d(x, stride=2, kernel_size=3, padding=1)
x = F.relu(self.bn3(self.conv3(x)))
x = x.view(x.size(0), 8192)
x = F.relu(self.bn1_fc(self.fc1(x)))
x = F.dropout(x, training=self.training)
x = F.relu(self.bn2_fc(self.fc2(x)))
return x
@BACKBONE_REGISTRY.register()
def cnn_digit5_m3sda(**kwargs):
"""
This architecture was used for the Digit-5 dataset in:
- Peng et al. Moment Matching for Multi-Source
Domain Adaptation. ICCV 2019.
"""
return FeatureExtractor()