136 lines
3.9 KiB
Python
136 lines
3.9 KiB
Python
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .build import BACKBONE_REGISTRY
|
|
from .backbone import Backbone
|
|
|
|
|
|
class PreActBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super().__init__()
|
|
self.bn1 = nn.BatchNorm2d(in_planes)
|
|
self.conv1 = nn.Conv2d(
|
|
in_planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False
|
|
)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(
|
|
planes, planes, kernel_size=3, stride=1, padding=1, bias=False
|
|
)
|
|
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(
|
|
in_planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(x))
|
|
shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x
|
|
out = self.conv1(out)
|
|
out = self.conv2(F.relu(self.bn2(out)))
|
|
out += shortcut
|
|
return out
|
|
|
|
|
|
class PreActBottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super().__init__()
|
|
self.bn1 = nn.BatchNorm2d(in_planes)
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(
|
|
planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False
|
|
)
|
|
self.bn3 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(
|
|
planes, self.expansion * planes, kernel_size=1, bias=False
|
|
)
|
|
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(
|
|
in_planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(x))
|
|
shortcut = self.shortcut(out) if hasattr(self, "shortcut") else x
|
|
out = self.conv1(out)
|
|
out = self.conv2(F.relu(self.bn2(out)))
|
|
out = self.conv3(F.relu(self.bn3(out)))
|
|
out += shortcut
|
|
return out
|
|
|
|
|
|
class PreActResNet(Backbone):
|
|
|
|
def __init__(self, block, num_blocks):
|
|
super().__init__()
|
|
self.in_planes = 64
|
|
|
|
self.conv1 = nn.Conv2d(
|
|
3, 64, kernel_size=3, stride=1, padding=1, bias=False
|
|
)
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
|
|
self._out_features = 512 * block.expansion
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
strides = [stride] + [1] * (num_blocks-1)
|
|
layers = []
|
|
for stride in strides:
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
self.in_planes = planes * block.expansion
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
out = self.conv1(x)
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
out = F.avg_pool2d(out, 4)
|
|
out = out.view(out.size(0), -1)
|
|
return out
|
|
|
|
|
|
"""
|
|
Preact-ResNet18 was used for the CIFAR10 and
|
|
SVHN datasets (both are SSL tasks) in
|
|
|
|
- Wang et al. Semi-Supervised Learning by
|
|
Augmented Distribution Alignment. ICCV 2019.
|
|
"""
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def preact_resnet18(**kwargs):
|
|
return PreActResNet(PreActBlock, [2, 2, 2, 2])
|