Files
MSGCoOp/Dassl.ProGrad.pytorch/datasets/ssl/cifar10_cifar100_svhn.py
2025-08-16 21:13:50 +08:00

51 lines
1.5 KiB
Python

import sys
import os.path as osp
from torchvision.datasets import SVHN, CIFAR10, CIFAR100
from dassl.utils import mkdir_if_missing
def extract_and_save_image(dataset, save_dir):
if osp.exists(save_dir):
print('Folder "{}" already exists'.format(save_dir))
return
print('Extracting images to "{}" ...'.format(save_dir))
mkdir_if_missing(save_dir)
for i in range(len(dataset)):
img, label = dataset[i]
class_dir = osp.join(save_dir, str(label).zfill(3))
mkdir_if_missing(class_dir)
impath = osp.join(class_dir, str(i + 1).zfill(5) + ".jpg")
img.save(impath)
def download_and_prepare(name, root):
print("Dataset: {}".format(name))
print("Root: {}".format(root))
if name == "cifar10":
train = CIFAR10(root, train=True, download=True)
test = CIFAR10(root, train=False)
elif name == "cifar100":
train = CIFAR100(root, train=True, download=True)
test = CIFAR100(root, train=False)
elif name == "svhn":
train = SVHN(root, split="train", download=True)
test = SVHN(root, split="test", download=True)
else:
raise ValueError
train_dir = osp.join(root, name, "train")
test_dir = osp.join(root, name, "test")
extract_and_save_image(train, train_dir)
extract_and_save_image(test, test_dir)
if __name__ == "__main__":
download_and_prepare("cifar10", sys.argv[1])
download_and_prepare("cifar100", sys.argv[1])
download_and_prepare("svhn", sys.argv[1])