Files
MSGCoOp/MSGCoOp/scripts/base2new_test.sh
2026-01-31 23:48:05 +08:00

50 lines
1.4 KiB
Bash

#!/bin/bash
# custom config
DATA=~/Datasets/CoOp
TRAINER=$1
DATASET=$2
N_PROMPTS=4
KG_WEIGHT=$3
MP_WEIGHT=$4
ATTN_REG_WEIGHT=$5
#CFG=rn50_ep100 # config file
CFG=vit_b16_ep100_ctxv1
CTP=end # class token position (end or middle)
NCTX=4 # number of context tokens
SHOTS=16 # number of shots (1, 2, 4, 8, 16)
CSC=False # class-specific context (False or True)
LOADEP=100
SUB=new
for SEED in 1 2 3
do
COMMON_DIR=${DATASET}/shots_${SHOTS}_${KG_WEIGHT}_${MP_WEIGHT}_${ATTN_REG_WEIGH}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=output/base2new/train_base/${COMMON_DIR}
DIR=output/base2new/test_${SUB}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
TRAINER.COOP.N_PROMPTS ${N_PROMPTS} \
TRAINER.COOP.N_CTX ${NCTX} \
TRAINER.COOP.CSC ${CSC} \
TRAINER.COOP.CLASS_TOKEN_POSITION ${CTP} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
fi
done