79 lines
2.5 KiB
Python
79 lines
2.5 KiB
Python
import copy
|
|
from torch.nn import functional as F
|
|
|
|
from dassl.engine import TRAINER_REGISTRY, TrainerXU
|
|
from dassl.metrics import compute_accuracy
|
|
from dassl.modeling.ops.utils import sigmoid_rampup, ema_model_update
|
|
|
|
|
|
@TRAINER_REGISTRY.register()
|
|
class SelfEnsembling(TrainerXU):
|
|
"""Self-ensembling for visual domain adaptation.
|
|
|
|
https://arxiv.org/abs/1706.05208.
|
|
"""
|
|
|
|
def __init__(self, cfg):
|
|
super().__init__(cfg)
|
|
self.ema_alpha = cfg.TRAINER.SE.EMA_ALPHA
|
|
self.conf_thre = cfg.TRAINER.SE.CONF_THRE
|
|
self.rampup = cfg.TRAINER.SE.RAMPUP
|
|
|
|
self.teacher = copy.deepcopy(self.model)
|
|
self.teacher.train()
|
|
for param in self.teacher.parameters():
|
|
param.requires_grad_(False)
|
|
|
|
def check_cfg(self, cfg):
|
|
assert cfg.DATALOADER.K_TRANSFORMS == 2
|
|
|
|
def forward_backward(self, batch_x, batch_u):
|
|
global_step = self.batch_idx + self.epoch * self.num_batches
|
|
parsed = self.parse_batch_train(batch_x, batch_u)
|
|
input_x, label_x, input_u1, input_u2 = parsed
|
|
|
|
logit_x = self.model(input_x)
|
|
loss_x = F.cross_entropy(logit_x, label_x)
|
|
|
|
prob_u = F.softmax(self.model(input_u1), 1)
|
|
t_prob_u = F.softmax(self.teacher(input_u2), 1)
|
|
loss_u = ((prob_u - t_prob_u)**2).sum(1)
|
|
|
|
if self.conf_thre:
|
|
max_prob = t_prob_u.max(1)[0]
|
|
mask = (max_prob > self.conf_thre).float()
|
|
loss_u = (loss_u * mask).mean()
|
|
else:
|
|
weight_u = sigmoid_rampup(global_step, self.rampup)
|
|
loss_u = loss_u.mean() * weight_u
|
|
|
|
loss = loss_x + loss_u
|
|
self.model_backward_and_update(loss)
|
|
|
|
ema_alpha = min(1 - 1 / (global_step+1), self.ema_alpha)
|
|
ema_model_update(self.model, self.teacher, ema_alpha)
|
|
|
|
loss_summary = {
|
|
"loss_x": loss_x.item(),
|
|
"acc_x": compute_accuracy(logit_x, label_x)[0].item(),
|
|
"loss_u": loss_u.item(),
|
|
}
|
|
|
|
if (self.batch_idx + 1) == self.num_batches:
|
|
self.update_lr()
|
|
|
|
return loss_summary
|
|
|
|
def parse_batch_train(self, batch_x, batch_u):
|
|
input_x = batch_x["img"][0]
|
|
label_x = batch_x["label"]
|
|
input_u = batch_u["img"]
|
|
input_u1, input_u2 = input_u
|
|
|
|
input_x = input_x.to(self.device)
|
|
label_x = label_x.to(self.device)
|
|
input_u1 = input_u1.to(self.device)
|
|
input_u2 = input_u2.to(self.device)
|
|
|
|
return input_x, label_x, input_u1, input_u2
|