Files
MSGCoOp/Dassl.ProGrad.pytorch/dassl/engine/dg/vanilla.py
2025-08-16 21:13:50 +08:00

33 lines
884 B
Python

from torch.nn import functional as F
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.metrics import compute_accuracy
@TRAINER_REGISTRY.register()
class Vanilla(TrainerX):
"""Vanilla baseline."""
def forward_backward(self, batch):
input, label = self.parse_batch_train(batch)
output = self.model(input)
loss = F.cross_entropy(output, label)
self.model_backward_and_update(loss)
loss_summary = {
"loss": loss.item(),
"acc": compute_accuracy(output, label)[0].item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label