590 lines
14 KiB
Python
590 lines
14 KiB
Python
import torch.nn as nn
|
|
import torch.utils.model_zoo as model_zoo
|
|
|
|
from .build import BACKBONE_REGISTRY
|
|
from .backbone import Backbone
|
|
|
|
model_urls = {
|
|
"resnet18": "https://download.pytorch.org/models/resnet18-5c106cde.pth",
|
|
"resnet34": "https://download.pytorch.org/models/resnet34-333f7ec4.pth",
|
|
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
|
|
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
|
|
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
|
|
}
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False
|
|
)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super().__init__()
|
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(
|
|
planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False
|
|
)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(
|
|
planes, planes * self.expansion, kernel_size=1, bias=False
|
|
)
|
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet(Backbone):
|
|
|
|
def __init__(
|
|
self,
|
|
block,
|
|
layers,
|
|
ms_class=None,
|
|
ms_layers=[],
|
|
ms_p=0.5,
|
|
ms_a=0.1,
|
|
**kwargs
|
|
):
|
|
self.inplanes = 64
|
|
super().__init__()
|
|
|
|
# backbone network
|
|
self.conv1 = nn.Conv2d(
|
|
3, 64, kernel_size=7, stride=2, padding=3, bias=False
|
|
)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
|
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
self._out_features = 512 * block.expansion
|
|
|
|
self.mixstyle = None
|
|
if ms_layers:
|
|
self.mixstyle = ms_class(p=ms_p, alpha=ms_a)
|
|
for layer_name in ms_layers:
|
|
assert layer_name in ["layer1", "layer2", "layer3"]
|
|
print(f"Insert MixStyle after {ms_layers}")
|
|
self.ms_layers = ms_layers
|
|
|
|
self._init_params()
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(
|
|
self.inplanes,
|
|
planes * block.expansion,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def _init_params(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(
|
|
m.weight, mode="fan_out", nonlinearity="relu"
|
|
)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm1d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
if m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def featuremaps(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x = self.maxpool(x)
|
|
x = self.layer1(x)
|
|
if "layer1" in self.ms_layers:
|
|
x = self.mixstyle(x)
|
|
x = self.layer2(x)
|
|
if "layer2" in self.ms_layers:
|
|
x = self.mixstyle(x)
|
|
x = self.layer3(x)
|
|
if "layer3" in self.ms_layers:
|
|
x = self.mixstyle(x)
|
|
return self.layer4(x)
|
|
|
|
def forward(self, x):
|
|
f = self.featuremaps(x)
|
|
v = self.global_avgpool(f)
|
|
return v.view(v.size(0), -1)
|
|
|
|
|
|
def init_pretrained_weights(model, model_url):
|
|
pretrain_dict = model_zoo.load_url(model_url)
|
|
model.load_state_dict(pretrain_dict, strict=False)
|
|
|
|
|
|
"""
|
|
Residual network configurations:
|
|
--
|
|
resnet18: block=BasicBlock, layers=[2, 2, 2, 2]
|
|
resnet34: block=BasicBlock, layers=[3, 4, 6, 3]
|
|
resnet50: block=Bottleneck, layers=[3, 4, 6, 3]
|
|
resnet101: block=Bottleneck, layers=[3, 4, 23, 3]
|
|
resnet152: block=Bottleneck, layers=[3, 8, 36, 3]
|
|
"""
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet18(pretrained=True, **kwargs):
|
|
model = ResNet(block=BasicBlock, layers=[2, 2, 2, 2])
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet18"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet34(pretrained=True, **kwargs):
|
|
model = ResNet(block=BasicBlock, layers=[3, 4, 6, 3])
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet34"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet50(pretrained=True, **kwargs):
|
|
model = ResNet(block=Bottleneck, layers=[3, 4, 6, 3])
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet50"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet101(pretrained=True, **kwargs):
|
|
model = ResNet(block=Bottleneck, layers=[3, 4, 23, 3])
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet101"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet152(pretrained=True, **kwargs):
|
|
model = ResNet(block=Bottleneck, layers=[3, 8, 36, 3])
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet152"])
|
|
|
|
return model
|
|
|
|
|
|
"""
|
|
Residual networks with mixstyle
|
|
"""
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet18_ms_l123(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=BasicBlock,
|
|
layers=[2, 2, 2, 2],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1", "layer2", "layer3"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet18"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet18_ms_l12(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=BasicBlock,
|
|
layers=[2, 2, 2, 2],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1", "layer2"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet18"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet18_ms_l1(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=BasicBlock,
|
|
layers=[2, 2, 2, 2],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1"]
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet18"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet50_ms_l123(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 6, 3],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1", "layer2", "layer3"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet50"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet50_ms_l12(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 6, 3],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1", "layer2"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet50"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet50_ms_l1(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 6, 3],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1"]
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet50"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet101_ms_l123(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 23, 3],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1", "layer2", "layer3"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet101"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet101_ms_l12(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 23, 3],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1", "layer2"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet101"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet101_ms_l1(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import MixStyle
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 23, 3],
|
|
ms_class=MixStyle,
|
|
ms_layers=["layer1"]
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet101"])
|
|
|
|
return model
|
|
|
|
|
|
"""
|
|
Residual networks with efdmix
|
|
"""
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet18_efdmix_l123(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=BasicBlock,
|
|
layers=[2, 2, 2, 2],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1", "layer2", "layer3"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet18"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet18_efdmix_l12(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=BasicBlock,
|
|
layers=[2, 2, 2, 2],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1", "layer2"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet18"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet18_efdmix_l1(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=BasicBlock,
|
|
layers=[2, 2, 2, 2],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1"]
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet18"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet50_efdmix_l123(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 6, 3],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1", "layer2", "layer3"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet50"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet50_efdmix_l12(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 6, 3],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1", "layer2"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet50"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet50_efdmix_l1(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 6, 3],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1"]
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet50"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet101_efdmix_l123(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 23, 3],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1", "layer2", "layer3"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet101"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet101_efdmix_l12(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 23, 3],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1", "layer2"],
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet101"])
|
|
|
|
return model
|
|
|
|
|
|
@BACKBONE_REGISTRY.register()
|
|
def resnet101_efdmix_l1(pretrained=True, **kwargs):
|
|
from dassl.modeling.ops import EFDMix
|
|
|
|
model = ResNet(
|
|
block=Bottleneck,
|
|
layers=[3, 4, 23, 3],
|
|
ms_class=EFDMix,
|
|
ms_layers=["layer1"]
|
|
)
|
|
|
|
if pretrained:
|
|
init_pretrained_weights(model, model_urls["resnet101"])
|
|
|
|
return model
|