vault backup: 2023-10-12 20:56:34
This commit is contained in:
3
.obsidian/workspace.json
vendored
3
.obsidian/workspace.json
vendored
@@ -77,7 +77,8 @@
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
"direction": "horizontal",
|
"direction": "horizontal",
|
||||||
"width": 315.5
|
"width": 315.5,
|
||||||
|
"collapsed": true
|
||||||
},
|
},
|
||||||
"right": {
|
"right": {
|
||||||
"id": "c501495747cfa761",
|
"id": "c501495747cfa761",
|
||||||
|
|||||||
@@ -10,3 +10,4 @@ $L(\mathbf{w}, b) = \frac1n\sum_{i=1}^{n} l^i(\mathbf{x}, b)$
|
|||||||
梯度下降法主要计算损失函数关于模型参数的导数。但是每次计算时候遍历整个数据集,效率会很低。所以每次计算先抽取一个小批量$B$(由固定数量的样本组成)的梯度,然后我们将梯度乘以一个预先确定的正数$\eta$,并从当前采纳数的值中减掉。
|
梯度下降法主要计算损失函数关于模型参数的导数。但是每次计算时候遍历整个数据集,效率会很低。所以每次计算先抽取一个小批量$B$(由固定数量的样本组成)的梯度,然后我们将梯度乘以一个预先确定的正数$\eta$,并从当前采纳数的值中减掉。
|
||||||
$(\mathbf{w}, b) <- (\mathbf{w},b) - \frac{\eta}{|B|} \sum_{i\in{B}}\partial_{(\mathbf{w}, b)}l^i(\mathbf{w},b)$
|
$(\mathbf{w}, b) <- (\mathbf{w},b) - \frac{\eta}{|B|} \sum_{i\in{B}}\partial_{(\mathbf{w}, b)}l^i(\mathbf{w},b)$
|
||||||
其中$\eta$代表学习率
|
其中$\eta$代表学习率
|
||||||
|
# 激活函数
|
||||||
|
|||||||
Reference in New Issue
Block a user