From e1996dd103f5aab09ded5ad7d001fa6572220164 Mon Sep 17 00:00:00 2001 From: Rain&Bus Date: Mon, 1 Apr 2024 18:46:15 +0800 Subject: [PATCH] vault backup: 2024-04-01 18:46:15 --- .obsidian/appearance.json | 2 +- Books/动手学深度学习/基础概念.md | 2 ++ 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/.obsidian/appearance.json b/.obsidian/appearance.json index e39d435..6ea92b8 100644 --- a/.obsidian/appearance.json +++ b/.obsidian/appearance.json @@ -2,7 +2,7 @@ "accentColor": "", "cssTheme": "Minimal", "monospaceFontFamily": "Maple Mono SC NF", - "theme": "moonstone", + "theme": "system", "interfaceFontFamily": "霞鹜文楷", "textFontFamily": "霞鹜文楷等宽", "translucency": false diff --git a/Books/动手学深度学习/基础概念.md b/Books/动手学深度学习/基础概念.md index 5b97f76..87573e9 100644 --- a/Books/动手学深度学习/基础概念.md +++ b/Books/动手学深度学习/基础概念.md @@ -23,4 +23,6 @@ $L(\mathbf{w}, b) = \frac1n\sum_{i=1}^{n} l^i(\mathbf{x}, b)$ 反向传播:$w_i ← w_i - \alpha(\frac{\partial L_0}{\partial w_i} + \lambda w_i)$ 通过反向传播的过程我们可以看到,每次迭代后,权重的值都会变为$(1 - \lambda \alpha)$倍,使得权重值更加靠近零,但是不为0,使模型偏向于学习更加简单的、泛化性能更高的模型。L1正则化则会导致模型将权重集中在一部分特征上,将其它权重清零,这称之为特征选择。 - Dropout + *经典泛化理论认为,为了缩小训练和测试性能之间的差距,应该以简单的模型为目标。简单性的另一个角度是平滑性,即函数不应该对其输入的微小变化敏感。* + Dropout在计算每一层时 \ No newline at end of file