1.0 KiB
1.0 KiB
Neural Network and Deep Learning
Logistic Regression
$$\begin{align} 正向传递\ z &= w^Tx + b \ a &= \sigma(z) = \frac{1}{1+e^{-x}} \ \hat{y} &= L(a) = -ylog(\hat{y}) - (1-y)log(1-\hat{y}) \ \ 其中(\hat{y} = a) \ 反向传递 \ \frac{dL}{da} &= \frac{(a-y)}{a(1-a)} \ \frac{da}{dz} &= a(1-a) \ dz = \frac{dL}{dz} &= \frac{dL}{da} \cdot \frac{da}{dz} = a-y \ dw = \frac{dL}{dw} &= \frac{dL}{dz} \cdot \frac{dz}{dw} = xdz \ db = \frac{dL}{db} &= \frac{dL}{dz} \cdot \frac{dz}{db} = dz \ w &= w - \eta \cdot dw \ b &= b - \eta \cdot db \end{align}$$ 正向传递:计算网络输出。 反向传递:更新模型参数。 sigmoid函数:消除线性。
线性激活函数:
a = z如果我们使用线性激活函数,无论我们经过多少层网络迭代,都相当于是对输入进行线性变换。
损失函数:计算模型预测结果的精度,反向传播的目的就是使得。
Vectorization
向量化相较于显式循环更高效,能够更好的利用系统的并行化计算。