Release of PromptSRC with pretrained models.

This commit is contained in:
uzair khattak
2023-07-13 23:43:31 +05:00
commit 8be7dcff6b
132 changed files with 106641 additions and 0 deletions

View File

@@ -0,0 +1,54 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=CoCoOp
DATASET=$1
SEED=$2
CFG=vit_b16_c4_ep10_batch1_ctxv1
SHOTS=16
LOADEP=10
SUB=new
COMMON_DIR=${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=output/base2new/train_base/${COMMON_DIR}
DIR=output/base2new/test_${SUB}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Evaluating model"
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
fi

View File

@@ -0,0 +1,39 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=CoCoOp
DATASET=$1
SEED=$2
CFG=vit_b16_c4_ep10_batch1_ctxv1
SHOTS=16
DIR=output/base2new/train_base/${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
fi

32
scripts/cocoop/xd_test.sh Normal file
View File

@@ -0,0 +1,32 @@
#!/bin/bash
#cd ../..
# custom config
DATA=/path/to/datasets
TRAINER=CoCoOp
DATASET=$1
SEED=$2
CFG=vit_b16_c4_ep10_batch1_ctxv1
SHOTS=16
DIR=output/evaluation/${TRAINER}/${CFG}_${SHOTS}shots/${DATASET}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir output/imagenet/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED} \
--load-epoch 10 \
--eval-only
fi

View File

@@ -0,0 +1,30 @@
#!/bin/bash
#cd ../..
# custom config
DATA=/path/to/datasets
TRAINER=CoCoOp
DATASET=imagenet
SEED=$1
CFG=vit_b16_c4_ep10_batch1_ctxv1
SHOTS=16
DIR=output/${DATASET}/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS}
fi

31
scripts/coop/eval.sh Normal file
View File

@@ -0,0 +1,31 @@
#!/bin/bash
#cd ../..
# custom config
DATA=/path/to/datasets
TRAINER=CoOp
SHOTS=16
NCTX=16
CSC=False
CTP=end
DATASET=$1
CFG=$2
for SEED in 1 2 3
do
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir output/evaluation/${TRAINER}/${CFG}_${SHOTS}shots/nctx${NCTX}_csc${CSC}_ctp${CTP}/${DATASET}/seed${SEED} \
--model-dir output/imagenet/${TRAINER}/${CFG}_${SHOTS}shots/nctx${NCTX}_csc${CSC}_ctp${CTP}/seed${SEED} \
--load-epoch 50 \
--eval-only \
TRAINER.COOP.N_CTX ${NCTX} \
TRAINER.COOP.CSC ${CSC} \
TRAINER.COOP.CLASS_TOKEN_POSITION ${CTP}
done

35
scripts/coop/main.sh Normal file
View File

@@ -0,0 +1,35 @@
#!/bin/bash
#cd ../..
# custom config
DATA=/path/to/datasets
TRAINER=CoOp
DATASET=$1
CFG=$2 # config file
CTP=$3 # class token position (end or middle)
NCTX=$4 # number of context tokens
SHOTS=$5 # number of shots (1, 2, 4, 8, 16)
CSC=$6 # class-specific context (False or True)
for SEED in 1 2 3
do
DIR=output/${DATASET}/${TRAINER}/${CFG}_${SHOTS}shots/nctx${NCTX}_csc${CSC}_ctp${CTP}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
TRAINER.COOP.N_CTX ${NCTX} \
TRAINER.COOP.CSC ${CSC} \
TRAINER.COOP.CLASS_TOKEN_POSITION ${CTP} \
DATASET.NUM_SHOTS ${SHOTS}
fi
done

View File

@@ -0,0 +1,54 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=IVLP
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep20_batch4_4+4ctx
SHOTS=16
LOADEP=20
SUB=new
COMMON_DIR=${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=output/base2new/train_base/${COMMON_DIR}
DIR=output/base2new/test_${SUB}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Evaluating model"
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
fi

View File

@@ -0,0 +1,39 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=IVLP
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep20_batch4_4+4ctx
SHOTS=16
DIR=output/base2new/train_base/${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
fi

View File

@@ -0,0 +1,56 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=IVLP
DATASET=$1
SEED=$2
WEIGHTSPATH=$3
CFG=vit_b16_c2_ep20_batch4_4+4ctx
SHOTS=16
LOADEP=5
SUB_base=base
SUB_novel=new
COMMON_DIR=${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=${WEIGHTSPATH}/base/seed${SEED}
DIR_base=output/base2new/test_${SUB_base}/${COMMON_DIR}
DIR_novel=output/base2new/test_${SUB_novel}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Results are already available in ${DIR}. Skipping..."
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
# Evaluate on base classes
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR_base} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB_base}
# Evaluate on novel classes
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR_novel} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB_novel}
fi

View File

@@ -0,0 +1,54 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/home/gamerx/Documents/datasets"
TRAINER=MaPLe
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep5_batch4_2ctx
SHOTS=16
LOADEP=5
SUB=new
COMMON_DIR=${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=output/base2new/train_base/${COMMON_DIR}
DIR=output/base2new/test_${SUB}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Evaluating model"
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
fi

View File

@@ -0,0 +1,39 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/home/gamerx/Documents/datasets"
TRAINER=MaPLe
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep5_batch4_2ctx
SHOTS=16
DIR=output/base2new/train_base/${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
fi

View File

@@ -0,0 +1,58 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=MaPLe
DATASET=$1
SEED=$2
WEIGHTSPATH=$3
CFG=vit_b16_c2_ep5_batch4_2ctx
SHOTS=16
LOADEP=5
SUB_base=base
SUB_novel=new
COMMON_DIR=${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=${WEIGHTSPATH}/base/seed${SEED}
DIR_base=output/base2new/test_${SUB_base}/${COMMON_DIR}
DIR_novel=output/base2new/test_${SUB_novel}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Results are already available in ${DIR}. Skipping..."
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
# Evaluate on base classes
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR_base} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB_base}
# Evaluate on novel classes
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR_novel} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB_novel}
fi

View File

@@ -0,0 +1,38 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=MaPLe
DATASET=$1
SEED=$2
WEIGHTSPATH=$3
CFG=vit_b16_c2_ep5_batch4_2ctx_cross_datasets
SHOTS=16
LOADEP=2
MODEL_DIR=${WEIGHTSPATH}/seed${SEED}
DIR=output/evaluation/${TRAINER}/${CFG}_${SHOTS}shots/${DATASET}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are already available in ${DIR}. Skipping..."
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
# Evaluate on evaluation datasets
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
fi

View File

@@ -0,0 +1,32 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=MaPLe
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep5_batch4_2ctx_cross_datasets
SHOTS=16
DIR=output/evaluation/${TRAINER}/${CFG}_${SHOTS}shots/${DATASET}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir output/imagenet/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED} \
--load-epoch 2 \
--eval-only
fi

View File

@@ -0,0 +1,30 @@
#!/bin/bash
#cd ../..
# custom config
DATA="/path/to/dataset/folder"
TRAINER=MaPLe
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep5_batch4_2ctx_cross_datasets
SHOTS=16
DIR=output/${DATASET}/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}."
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS}
fi

View File

@@ -0,0 +1,53 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep20_batch4_4+4ctx
SHOTS=16
LOADEP=20
SUB=new
COMMON_DIR=${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=output/base2new/train_base/${COMMON_DIR}
DIR=output/base2new/test_${SUB}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Evaluating model"
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB}
fi

View File

@@ -0,0 +1,37 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep20_batch4_4+4ctx
SHOTS=16
DIR=output/base2new/train_base/${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Resuming..."
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES base
fi

View File

@@ -0,0 +1,27 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
CFG=vit_b16_c2_ep50_batch4_4+4ctx_few_shot
SHOTS=$2
for SEED in 1 2 3
do
DIR=output/${DATASET}/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED}
if [ -d "$DIR" ]; then
echo " The results exist at ${DIR}"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS}
fi
done

View File

@@ -0,0 +1,54 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
SEED=$2
WEIGHTSPATH=$3
CFG=vit_b16_c2_ep20_batch4_4+4ctx
SHOTS=16
LOADEP=20
SUB_base=base
SUB_novel=new
COMMON_DIR=${DATASET}/shots_${SHOTS}/${TRAINER}/${CFG}/seed${SEED}
MODEL_DIR=${WEIGHTSPATH}/base/seed${SEED}
DIR_base=output/base2new/test_${SUB_base}/${COMMON_DIR}
DIR_novel=output/base2new/test_${SUB_novel}/${COMMON_DIR}
if [ -d "$DIR" ]; then
echo "Results are already available in ${DIR}. Skipping..."
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
# Evaluate on base classes
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR_base} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB_base}
# Evaluate on novel classes
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR_novel} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
DATASET.SUBSAMPLE_CLASSES ${SUB_novel}
fi

View File

@@ -0,0 +1,34 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
SHOTS=$2
WEIGHTSPATH=$3
CFG=vit_b16_c2_ep50_batch4_4+4ctx_few_shot
LOADEP=50
for SEED in 1 2 3
do
MODEL_DIR=${WEIGHTSPATH}/${SHOTS}shot/seed${SEED}
DIR=output/few_shot/${DATASET}/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED}
if [ -d "$DIR" ]; then
echo " The results exist at ${DIR}"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS}
fi
done

View File

@@ -0,0 +1,36 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
SEED=$2
WEIGHTSPATH=$3
CFG=vit_b16_c2_ep20_batch4_4+4ctx_cross_datasets
SHOTS=16
LOADEP=20
MODEL_DIR=${WEIGHTSPATH}/seed${SEED}
DIR=output/evaluation/${TRAINER}/${CFG}_${SHOTS}shots/${DATASET}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are already available in ${DIR}. Skipping..."
else
echo "Evaluating model"
echo "Runing the first phase job and save the output to ${DIR}"
# Evaluate on evaluation datasets
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir ${MODEL_DIR} \
--load-epoch ${LOADEP} \
--eval-only \
DATASET.NUM_SHOTS ${SHOTS} \
fi

View File

@@ -0,0 +1,31 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep5_batch4_4+4ctx_cross_datasets
SHOTS=16
DIR=output/evaluation/${TRAINER}/${CFG}_${SHOTS}shots/${DATASET}/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}. Skip this job"
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
--model-dir output/imagenet/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED} \
--load-epoch 20 \
--eval-only
fi

View File

@@ -0,0 +1,29 @@
#!/bin/bash
# custom config
DATA="/path/to/dataset/folder"
TRAINER=PromptSRC
DATASET=$1
SEED=$2
CFG=vit_b16_c2_ep5_batch4_4+4ctx_cross_datasets
SHOTS=16
DIR=output/${DATASET}/${TRAINER}/${CFG}_${SHOTS}shots/seed${SEED}
if [ -d "$DIR" ]; then
echo "Results are available in ${DIR}."
else
echo "Run this job and save the output to ${DIR}"
python train.py \
--root ${DATA} \
--seed ${SEED} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
--output-dir ${DIR} \
DATASET.NUM_SHOTS ${SHOTS}
fi

View File

@@ -0,0 +1,17 @@
#!/bin/bash
#cd ../..
# custom config
DATA=/path/to/datasets
TRAINER=ZeroshotCLIP
DATASET=$1
CFG=$2 # rn50, rn101, vit_b32 or vit_b16
python train.py \
--root ${DATA} \
--trainer ${TRAINER} \
--dataset-config-file configs/datasets/${DATASET}.yaml \
--config-file configs/trainers/CoOp/${CFG}.yaml \
--output-dir output/${TRAINER}/${CFG}/${DATASET} \
--eval-only