Release of PromptSRC with pretrained models.

This commit is contained in:
uzair khattak
2023-07-13 23:43:31 +05:00
commit 8be7dcff6b
132 changed files with 106641 additions and 0 deletions

0
trainers/__init__.py Normal file
View File

318
trainers/cocoop.py Normal file
View File

@@ -0,0 +1,318 @@
import os.path as osp
from collections import OrderedDict
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import GradScaler, autocast
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.metrics import compute_accuracy
from dassl.utils import load_pretrained_weights, load_checkpoint
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
def load_clip_to_cpu(cfg):
backbone_name = cfg.MODEL.BACKBONE.NAME
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
design_details = {"trainer": 'CoCoOp',
"vision_depth": 0,
"language_depth": 0, "vision_ctx": 0,
"language_ctx": 0}
model = clip.build_model(state_dict or model.state_dict(), design_details)
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class PromptLearner(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
n_ctx = cfg.TRAINER.COCOOP.N_CTX
ctx_init = cfg.TRAINER.COCOOP.CTX_INIT
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
vis_dim = clip_model.visual.output_dim
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = cfg.INPUT.SIZE[0]
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init:
# use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = len(ctx_init.split(" "))
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# random initialization
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print(f'Initial context: "{prompt_prefix}"')
print(f"Number of context words (tokens): {n_ctx}")
self.ctx = nn.Parameter(ctx_vectors)
self.meta_net = nn.Sequential(OrderedDict([
("linear1", nn.Linear(vis_dim, vis_dim // 16)),
("relu", nn.ReLU(inplace=True)),
("linear2", nn.Linear(vis_dim // 16, ctx_dim))
]))
if cfg.TRAINER.COCOOP.PREC == "fp16":
self.meta_net.half()
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
def construct_prompts(self, ctx, prefix, suffix, label=None):
# dim0 is either batch_size (during training) or n_cls (during testing)
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
if label is not None:
prefix = prefix[label]
suffix = suffix[label]
prompts = torch.cat(
[
prefix, # (dim0, 1, dim)
ctx, # (dim0, n_ctx, dim)
suffix, # (dim0, *, dim)
],
dim=1,
)
return prompts
def forward(self, im_features):
prefix = self.token_prefix
suffix = self.token_suffix
ctx = self.ctx # (n_ctx, ctx_dim)
bias = self.meta_net(im_features) # (batch, ctx_dim)
bias = bias.unsqueeze(1) # (batch, 1, ctx_dim)
ctx = ctx.unsqueeze(0) # (1, n_ctx, ctx_dim)
ctx_shifted = ctx + bias # (batch, n_ctx, ctx_dim)
# Use instance-conditioned context tokens for all classes
prompts = []
for ctx_shifted_i in ctx_shifted:
ctx_i = ctx_shifted_i.unsqueeze(0).expand(self.n_cls, -1, -1)
pts_i = self.construct_prompts(ctx_i, prefix, suffix) # (n_cls, n_tkn, ctx_dim)
prompts.append(pts_i)
prompts = torch.stack(prompts)
return prompts
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = PromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
def forward(self, image, label=None):
tokenized_prompts = self.tokenized_prompts
logit_scale = self.logit_scale.exp()
image_features = self.image_encoder(image.type(self.dtype))
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
prompts = self.prompt_learner(image_features)
logits = []
for pts_i, imf_i in zip(prompts, image_features):
text_features = self.text_encoder(pts_i, tokenized_prompts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
l_i = logit_scale * imf_i @ text_features.t()
logits.append(l_i)
logits = torch.stack(logits)
if self.prompt_learner.training:
return F.cross_entropy(logits, label)
return logits
@TRAINER_REGISTRY.register()
class CoCoOp(TrainerX):
def check_cfg(self, cfg):
assert cfg.TRAINER.COCOOP.PREC in ["fp16", "fp32", "amp"]
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
if cfg.TRAINER.COCOOP.PREC == "fp32" or cfg.TRAINER.COCOOP.PREC == "amp":
# CLIP's default precision is fp16
clip_model.float()
print("Building custom CLIP")
self.model = CustomCLIP(cfg, classnames, clip_model)
print("Turning off gradients in both the image and the text encoder")
name_to_update = "prompt_learner"
for name, param in self.model.named_parameters():
if name_to_update not in name:
param.requires_grad_(False)
# Double check
enabled = set()
for name, param in self.model.named_parameters():
if param.requires_grad:
enabled.add(name)
print(f"Parameters to be updated: {enabled}")
if cfg.MODEL.INIT_WEIGHTS:
load_pretrained_weights(self.model.prompt_learner, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model.prompt_learner, cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("prompt_learner", self.model.prompt_learner, self.optim, self.sched)
self.scaler = GradScaler() if cfg.TRAINER.COCOOP.PREC == "amp" else None
# Note that multi-gpu training could be slow because CLIP's size is
# big, which slows down the copy operation in DataParallel
device_count = torch.cuda.device_count()
if device_count > 1:
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
self.model = nn.DataParallel(self.model)
def forward_backward(self, batch):
image, label = self.parse_batch_train(batch)
model = self.model
optim = self.optim
scaler = self.scaler
prec = self.cfg.TRAINER.COCOOP.PREC
if prec == "amp":
with autocast():
loss = model(image, label)
optim.zero_grad()
scaler.scale(loss).backward()
scaler.step(optim)
scaler.update()
else:
loss = model(image, label)
optim.zero_grad()
loss.backward()
optim.step()
loss_summary = {"loss": loss.item()}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label
def load_model(self, directory, epoch=None):
if not directory:
print("Note that load_model() is skipped as no pretrained model is given")
return
names = self.get_model_names()
# By default, the best model is loaded
model_file = "model-best.pth.tar"
if epoch is not None:
model_file = "model.pth.tar-" + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint["state_dict"]
epoch = checkpoint["epoch"]
# Ignore fixed token vectors
if "token_prefix" in state_dict:
del state_dict["token_prefix"]
if "token_suffix" in state_dict:
del state_dict["token_suffix"]
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
# set strict=False
self._models[name].load_state_dict(state_dict, strict=False)

328
trainers/coop.py Normal file
View File

@@ -0,0 +1,328 @@
import os.path as osp
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import GradScaler, autocast
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.metrics import compute_accuracy
from dassl.utils import load_pretrained_weights, load_checkpoint
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
def load_clip_to_cpu(cfg):
backbone_name = cfg.MODEL.BACKBONE.NAME
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
design_details = {"trainer": 'CoOp',
"vision_depth": 0,
"language_depth": 0, "vision_ctx": 0,
"language_ctx": 0}
model = clip.build_model(state_dict or model.state_dict(), design_details)
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class PromptLearner(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
n_ctx = cfg.TRAINER.COOP.N_CTX
ctx_init = cfg.TRAINER.COOP.CTX_INIT
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = cfg.INPUT.SIZE[0]
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init:
# use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = len(ctx_init.split(" "))
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1 : 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# random initialization
if cfg.TRAINER.COOP.CSC:
print("Initializing class-specific contexts")
ctx_vectors = torch.empty(n_cls, n_ctx, ctx_dim, dtype=dtype)
else:
print("Initializing a generic context")
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print(f'Initial context: "{prompt_prefix}"')
print(f"Number of context words (tokens): {n_ctx}")
self.ctx = nn.Parameter(ctx_vectors) # to be optimized
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts])
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx :, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
self.class_token_position = cfg.TRAINER.COOP.CLASS_TOKEN_POSITION
def forward(self):
ctx = self.ctx
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
prefix = self.token_prefix
suffix = self.token_suffix
if self.class_token_position == "end":
prompts = torch.cat(
[
prefix, # (n_cls, 1, dim)
ctx, # (n_cls, n_ctx, dim)
suffix, # (n_cls, *, dim)
],
dim=1,
)
elif self.class_token_position == "middle":
half_n_ctx = self.n_ctx // 2
prompts = []
for i in range(self.n_cls):
name_len = self.name_lens[i]
prefix_i = prefix[i : i + 1, :, :]
class_i = suffix[i : i + 1, :name_len, :]
suffix_i = suffix[i : i + 1, name_len:, :]
ctx_i_half1 = ctx[i : i + 1, :half_n_ctx, :]
ctx_i_half2 = ctx[i : i + 1, half_n_ctx:, :]
prompt = torch.cat(
[
prefix_i, # (1, 1, dim)
ctx_i_half1, # (1, n_ctx//2, dim)
class_i, # (1, name_len, dim)
ctx_i_half2, # (1, n_ctx//2, dim)
suffix_i, # (1, *, dim)
],
dim=1,
)
prompts.append(prompt)
prompts = torch.cat(prompts, dim=0)
elif self.class_token_position == "front":
prompts = []
for i in range(self.n_cls):
name_len = self.name_lens[i]
prefix_i = prefix[i : i + 1, :, :]
class_i = suffix[i : i + 1, :name_len, :]
suffix_i = suffix[i : i + 1, name_len:, :]
ctx_i = ctx[i : i + 1, :, :]
prompt = torch.cat(
[
prefix_i, # (1, 1, dim)
class_i, # (1, name_len, dim)
ctx_i, # (1, n_ctx, dim)
suffix_i, # (1, *, dim)
],
dim=1,
)
prompts.append(prompt)
prompts = torch.cat(prompts, dim=0)
else:
raise ValueError
return prompts
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = PromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
def forward(self, image):
image_features = self.image_encoder(image.type(self.dtype))
prompts = self.prompt_learner()
tokenized_prompts = self.tokenized_prompts
text_features = self.text_encoder(prompts, tokenized_prompts)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
logit_scale = self.logit_scale.exp()
logits = logit_scale * image_features @ text_features.t()
return logits
@TRAINER_REGISTRY.register()
class CoOp(TrainerX):
"""Context Optimization (CoOp).
Learning to Prompt for Vision-Language Models
https://arxiv.org/abs/2109.01134
"""
def check_cfg(self, cfg):
assert cfg.TRAINER.COOP.PREC in ["fp16", "fp32", "amp"]
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
if cfg.TRAINER.COOP.PREC == "fp32" or cfg.TRAINER.COOP.PREC == "amp":
# CLIP's default precision is fp16
clip_model.float()
print("Building custom CLIP")
self.model = CustomCLIP(cfg, classnames, clip_model)
print("Turning off gradients in both the image and the text encoder")
for name, param in self.model.named_parameters():
if "prompt_learner" not in name:
param.requires_grad_(False)
if cfg.MODEL.INIT_WEIGHTS:
load_pretrained_weights(self.model.prompt_learner, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model.prompt_learner, cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("prompt_learner", self.model.prompt_learner, self.optim, self.sched)
self.scaler = GradScaler() if cfg.TRAINER.COOP.PREC == "amp" else None
# Note that multi-gpu training could be slow because CLIP's size is
# big, which slows down the copy operation in DataParallel
device_count = torch.cuda.device_count()
if device_count > 1:
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
self.model = nn.DataParallel(self.model)
def forward_backward(self, batch):
image, label = self.parse_batch_train(batch)
prec = self.cfg.TRAINER.COOP.PREC
if prec == "amp":
with autocast():
output = self.model(image)
loss = F.cross_entropy(output, label)
self.optim.zero_grad()
self.scaler.scale(loss).backward()
self.scaler.step(self.optim)
self.scaler.update()
else:
output = self.model(image)
loss = F.cross_entropy(output, label)
self.model_backward_and_update(loss)
loss_summary = {
"loss": loss.item(),
"acc": compute_accuracy(output, label)[0].item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label
def load_model(self, directory, epoch=None):
if not directory:
print("Note that load_model() is skipped as no pretrained model is given")
return
names = self.get_model_names()
# By default, the best model is loaded
model_file = "model-best.pth.tar"
if epoch is not None:
model_file = "model.pth.tar-" + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint["state_dict"]
epoch = checkpoint["epoch"]
# Ignore fixed token vectors
if "token_prefix" in state_dict:
del state_dict["token_prefix"]
if "token_suffix" in state_dict:
del state_dict["token_suffix"]
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
# set strict=False
self._models[name].load_state_dict(state_dict, strict=False)

View File

@@ -0,0 +1,74 @@
# source: https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_ImageNet.ipynb
IMAGENET_TEMPLATES = [
"a photo of a {}.",
"a bad photo of a {}.",
"a photo of many {}.",
"a sculpture of a {}.",
"a photo of the hard to see {}.",
"a low resolution photo of the {}.",
"a rendering of a {}.",
"graffiti of a {}.",
"a bad photo of the {}.",
"a cropped photo of the {}.",
"a tattoo of a {}.",
"the embroidered {}.",
"a photo of a hard to see {}.",
"a bright photo of a {}.",
"a photo of a clean {}.",
"a photo of a dirty {}.",
"a dark photo of the {}.",
"a drawing of a {}.",
"a photo of my {}.",
"the plastic {}.",
"a photo of the cool {}.",
"a close-up photo of a {}.",
"a black and white photo of the {}.",
"a painting of the {}.",
"a painting of a {}.",
"a pixelated photo of the {}.",
"a sculpture of the {}.",
"a bright photo of the {}.",
"a cropped photo of a {}.",
"a plastic {}.",
"a photo of the dirty {}.",
"a jpeg corrupted photo of a {}.",
"a blurry photo of the {}.",
"a photo of the {}.",
"a good photo of the {}.",
"a rendering of the {}.",
"a {} in a video game.",
"a photo of one {}.",
"a doodle of a {}.",
"a close-up photo of the {}.",
"the origami {}.",
"the {} in a video game.",
"a sketch of a {}.",
"a doodle of the {}.",
"a origami {}.",
"a low resolution photo of a {}.",
"the toy {}.",
"a rendition of the {}.",
"a photo of the clean {}.",
"a photo of a large {}.",
"a rendition of a {}.",
"a photo of a nice {}.",
"a photo of a weird {}.",
"a blurry photo of a {}.",
"a cartoon {}.",
"art of a {}.",
"a sketch of the {}.",
"a embroidered {}.",
"a pixelated photo of a {}.",
"itap of the {}.",
]
IMAGENET_TEMPLATES_SELECT = [
"itap of a {}.",
"a bad photo of the {}.",
"a origami {}.",
"a photo of the large {}.",
"a {} in a video game.",
"art of the {}.",
"a photo of the small {}.",
]

301
trainers/independentVL.py Normal file
View File

@@ -0,0 +1,301 @@
import os.path as osp
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import GradScaler, autocast
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.utils import load_pretrained_weights, load_checkpoint
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
def load_clip_to_cpu(cfg):
backbone_name = cfg.MODEL.BACKBONE.NAME
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
design_details = {"trainer": 'IVLP',
"vision_depth": cfg.TRAINER.IVLP.PROMPT_DEPTH_VISION,
"language_depth": cfg.TRAINER.IVLP.PROMPT_DEPTH_TEXT, "vision_ctx": cfg.TRAINER.IVLP.N_CTX_VISION,
"language_ctx": cfg.TRAINER.IVLP.N_CTX_TEXT}
model = clip.build_model(state_dict or model.state_dict(), design_details)
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class VLPromptLearner(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
# Make sure Language depth >= 1
assert cfg.TRAINER.IVLP.PROMPT_DEPTH_TEXT >= 1, "In Independent VL prompting, Language prompt depth should be >=1" \
"\nPlease use VPT trainer if you want to learn only vision " \
"branch "
n_ctx = cfg.TRAINER.IVLP.N_CTX_TEXT
ctx_init = cfg.TRAINER.IVLP.CTX_INIT
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
vis_dim = clip_model.visual.output_dim
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = cfg.INPUT.SIZE[0]
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init and (n_ctx) <= 4:
# Use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = n_ctx
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# Random initialization
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print(f"Independent V-L design")
print(f'Initial text context: "{prompt_prefix}"')
print(f"Number of context words (tokens) for Language prompting: {n_ctx}")
print(f"Number of context words (tokens) for Vision prompting: {cfg.TRAINER.IVLP.N_CTX_VISION}")
self.ctx = nn.Parameter(ctx_vectors)
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
def construct_prompts(self, ctx, prefix, suffix, label=None):
# dim0 is either batch_size (during training) or n_cls (during testing)
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
if label is not None:
prefix = prefix[label]
suffix = suffix[label]
prompts = torch.cat(
[
prefix, # (dim0, 1, dim)
ctx, # (dim0, n_ctx, dim)
suffix, # (dim0, *, dim)
],
dim=1,
)
return prompts
def forward(self):
ctx = self.ctx
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
prefix = self.token_prefix
suffix = self.token_suffix
prompts = self.construct_prompts(ctx, prefix, suffix)
return prompts
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = VLPromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
def forward(self, image, label=None):
tokenized_prompts = self.tokenized_prompts
logit_scale = self.logit_scale.exp()
prompts = self.prompt_learner()
text_features = self.text_encoder(prompts, tokenized_prompts)
image_features = self.image_encoder(image.type(self.dtype))
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
logits = logit_scale * image_features @ text_features.t()
if self.prompt_learner.training:
return F.cross_entropy(logits, label)
return logits
@TRAINER_REGISTRY.register()
class IVLP(TrainerX):
def check_cfg(self, cfg):
assert cfg.TRAINER.IVLP.PREC in ["fp16", "fp32", "amp"]
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
if cfg.TRAINER.IVLP.PREC == "fp32" or cfg.TRAINER.IVLP.PREC == "amp":
# CLIP's default precision is fp16
clip_model.float()
print("Building custom CLIP")
self.model = CustomCLIP(cfg, classnames, clip_model)
print("Turning off gradients in both the image and the text encoder")
name_to_update = "prompt_learner"
for name, param in self.model.named_parameters():
if name_to_update not in name:
# Make sure that VPT prompts are updated
if "VPT" in name:
param.requires_grad_(True)
else:
param.requires_grad_(False)
# Double check
enabled = set()
for name, param in self.model.named_parameters():
if param.requires_grad:
enabled.add(name)
print(f"Parameters to be updated: {enabled}")
if cfg.MODEL.INIT_WEIGHTS:
load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model, cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("VLPromptLearner", self.model, self.optim, self.sched)
self.scaler = GradScaler() if cfg.TRAINER.IVLP.PREC == "amp" else None
# Note that multi-gpu training could be slow because CLIP's size is
# big, which slows down the copy operation in DataParallel
device_count = torch.cuda.device_count()
if device_count > 1:
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
self.model = nn.DataParallel(self.model)
def forward_backward(self, batch):
image, label = self.parse_batch_train(batch)
model = self.model
optim = self.optim
scaler = self.scaler
prec = self.cfg.TRAINER.IVLP.PREC
if prec == "amp":
with autocast():
loss = model(image, label)
optim.zero_grad()
scaler.scale(loss).backward()
scaler.step(optim)
scaler.update()
else:
loss = model(image, label)
optim.zero_grad()
loss.backward()
optim.step()
loss_summary = {"loss": loss.item()}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label
def load_model(self, directory, epoch=None):
if not directory:
print("Note that load_model() is skipped as no pretrained model is given")
return
names = self.get_model_names()
# By default, the best model is loaded
model_file = "model-best.pth.tar"
if epoch is not None:
model_file = "model.pth.tar-" + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint["state_dict"]
epoch = checkpoint["epoch"]
# Ignore fixed token vectors
if "prompt_learner.token_prefix" in state_dict:
del state_dict["prompt_learner.token_prefix"]
if "prompt_learner.token_suffix" in state_dict:
del state_dict["prompt_learner.token_suffix"]
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
# set strict=False
self._models[name].load_state_dict(state_dict, strict=False)

333
trainers/maple.py Normal file
View File

@@ -0,0 +1,333 @@
import os.path as osp
from collections import OrderedDict
import math
import copy
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import GradScaler, autocast
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.metrics import compute_accuracy
from dassl.utils import load_pretrained_weights, load_checkpoint
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
def load_clip_to_cpu(cfg):
backbone_name = cfg.MODEL.BACKBONE.NAME
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
design_details = {"trainer": 'MaPLe',
"vision_depth": 0,
"language_depth": 0, "vision_ctx": 0,
"language_ctx": 0,
"maple_length": cfg.TRAINER.MAPLE.N_CTX}
model = clip.build_model(state_dict or model.state_dict(), design_details)
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts, compound_prompts_deeper_text):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
# Pass as the list, as nn.sequential cannot process multiple arguments in the forward pass
combined = [x, compound_prompts_deeper_text, 0] # third argument is the counter which denotes depth of prompt
outputs = self.transformer(combined)
x = outputs[0] # extract the x back from here
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class MultiModalPromptLearner(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
n_ctx = cfg.TRAINER.MAPLE.N_CTX
ctx_init = cfg.TRAINER.MAPLE.CTX_INIT
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = cfg.INPUT.SIZE[0]
# Default is 1, which is compound shallow prompting
assert cfg.TRAINER.MAPLE.PROMPT_DEPTH >= 1, "For MaPLe, PROMPT_DEPTH should be >= 1"
self.compound_prompts_depth = cfg.TRAINER.MAPLE.PROMPT_DEPTH # max=12, but will create 11 such shared prompts
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init and (n_ctx) <= 4:
# use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = n_ctx
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# random initialization
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print('MaPLe design: Multi-modal Prompt Learning')
print(f'Initial context: "{prompt_prefix}"')
print(f"Number of MaPLe context words (tokens): {n_ctx}")
# These below, related to the shallow prompts
# Linear layer so that the tokens will project to 512 and will be initialized from 768
self.proj = nn.Linear(ctx_dim, 768)
self.proj.half()
self.ctx = nn.Parameter(ctx_vectors)
# These below parameters related to the shared prompts
# Define the compound prompts for the deeper layers
# Minimum can be 1, which defaults to shallow MaPLe
# compound prompts
self.compound_prompts_text = nn.ParameterList([nn.Parameter(torch.empty(n_ctx, 512))
for _ in range(self.compound_prompts_depth - 1)])
for single_para in self.compound_prompts_text:
nn.init.normal_(single_para, std=0.02)
# Also make corresponding projection layers, for each prompt
single_layer = nn.Linear(ctx_dim, 768)
self.compound_prompt_projections = _get_clones(single_layer, self.compound_prompts_depth - 1)
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
def construct_prompts(self, ctx, prefix, suffix, label=None):
# dim0 is either batch_size (during training) or n_cls (during testing)
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
if label is not None:
prefix = prefix[label]
suffix = suffix[label]
prompts = torch.cat(
[
prefix, # (dim0, 1, dim)
ctx, # (dim0, n_ctx, dim)
suffix, # (dim0, *, dim)
],
dim=1,
)
return prompts
def forward(self):
ctx = self.ctx
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
prefix = self.token_prefix
suffix = self.token_suffix
prompts = self.construct_prompts(ctx, prefix, suffix)
# Before returning, need to transform
# prompts to 768 for the visual side
visual_deep_prompts = []
for index, layer in enumerate(self.compound_prompt_projections):
visual_deep_prompts.append(layer(self.compound_prompts_text[index]))
# Now the other way around
# We will project the textual prompts from 512 to 768
return prompts, self.proj(self.ctx), self.compound_prompts_text, visual_deep_prompts # pass here original, as for visual 768 is required
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = MultiModalPromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
def forward(self, image, label=None):
tokenized_prompts = self.tokenized_prompts
logit_scale = self.logit_scale.exp()
prompts, shared_ctx, deep_compound_prompts_text, deep_compound_prompts_vision = self.prompt_learner()
text_features = self.text_encoder(prompts, tokenized_prompts, deep_compound_prompts_text)
image_features = self.image_encoder(image.type(self.dtype), shared_ctx, deep_compound_prompts_vision)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
logits = logit_scale * image_features @ text_features.t()
if self.prompt_learner.training:
return F.cross_entropy(logits, label)
return logits
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
@TRAINER_REGISTRY.register()
class MaPLe(TrainerX):
def check_cfg(self, cfg):
assert cfg.TRAINER.MAPLE.PREC in ["fp16", "fp32", "amp"]
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
if cfg.TRAINER.MAPLE.PREC == "fp32" or cfg.TRAINER.MAPLE.PREC == "amp":
# CLIP's default precision is fp16
clip_model.float()
print("Building custom CLIP")
self.model = CustomCLIP(cfg, classnames, clip_model)
print("Turning off gradients in both the image and the text encoder")
name_to_update = "prompt_learner"
for name, param in self.model.named_parameters():
if name_to_update not in name:
# Make sure that VPT prompts are updated
if "VPT" in name:
param.requires_grad_(True)
else:
param.requires_grad_(False)
# Double check
enabled = set()
for name, param in self.model.named_parameters():
if param.requires_grad:
enabled.add(name)
print(f"Parameters to be updated: {enabled}")
if cfg.MODEL.INIT_WEIGHTS:
load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model, cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("MultiModalPromptLearner", self.model, self.optim, self.sched)
self.scaler = GradScaler() if cfg.TRAINER.MAPLE.PREC == "amp" else None
# Note that multi-gpu training could be slow because CLIP's size is
# big, which slows down the copy operation in DataParallel
device_count = torch.cuda.device_count()
if device_count > 1:
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
self.model = nn.DataParallel(self.model)
def forward_backward(self, batch):
image, label = self.parse_batch_train(batch)
model = self.model
optim = self.optim
scaler = self.scaler
prec = self.cfg.TRAINER.MAPLE.PREC
if prec == "amp":
with autocast():
loss = model(image, label)
optim.zero_grad()
scaler.scale(loss).backward()
scaler.step(optim)
scaler.update()
else:
loss = model(image, label)
optim.zero_grad()
loss.backward()
optim.step()
loss_summary = {"loss": loss.item()}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label
def load_model(self, directory, epoch=None):
if not directory:
print("Note that load_model() is skipped as no pretrained model is given")
return
names = self.get_model_names()
# By default, the best model is loaded
model_file = "model-best.pth.tar"
if epoch is not None:
model_file = "model.pth.tar-" + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint["state_dict"]
epoch = checkpoint["epoch"]
# Ignore fixed token vectors
if "prompt_learner.token_prefix" in state_dict:
del state_dict["prompt_learner.token_prefix"]
if "prompt_learner.token_suffix" in state_dict:
del state_dict["prompt_learner.token_suffix"]
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
# set strict=False
self._models[name].load_state_dict(state_dict, strict=False)

401
trainers/promptsrc.py Normal file
View File

@@ -0,0 +1,401 @@
import copy
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import GradScaler, autocast
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.utils import load_pretrained_weights, load_checkpoint
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
from .imagenet_templates import IMAGENET_TEMPLATES
_tokenizer = _Tokenizer()
def load_clip_to_cpu(cfg, zero_shot_model=False):
backbone_name = cfg.MODEL.BACKBONE.NAME
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
if not zero_shot_model:
design_details = {"trainer": 'IVLP',
"vision_depth": cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_VISION,
"language_depth": cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_TEXT,
"vision_ctx": cfg.TRAINER.PROMPTSRC.N_CTX_VISION,
"language_ctx": cfg.TRAINER.PROMPTSRC.N_CTX_TEXT}
model = clip.build_model(state_dict or model.state_dict(), design_details)
else:
# Return original CLIP model for generating frozen VL features
design_details = {"trainer": 'IVLP',
"vision_depth": 0,
"language_depth": 0, "vision_ctx": 0,
"language_ctx": 0}
model = clip.build_model(state_dict or model.state_dict(), design_details)
return model
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class VLPromptLearner(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
# Make sure Language depth >= 1
assert cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_TEXT >= 1, "In Independent VL prompting, Language prompt depth should be >=1" \
"\nPlease use VPT trainer if you want to learn only vision " \
"branch"
n_ctx = cfg.TRAINER.PROMPTSRC.N_CTX_TEXT
ctx_init = cfg.TRAINER.PROMPTSRC.CTX_INIT
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = cfg.INPUT.SIZE[0]
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init and n_ctx <= 4:
# use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = n_ctx
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# random initialization
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print(f"Independent V-L design")
print(f'Initial text context: "{prompt_prefix}"')
print(f"Number of context words (tokens) for Language prompting: {n_ctx}")
print(f"Number of context words (tokens) for Vision prompting: {cfg.TRAINER.PROMPTSRC.N_CTX_VISION}")
self.ctx = nn.Parameter(ctx_vectors)
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
# Also create frozen CLIP
clip_model_temp = load_clip_to_cpu(cfg, True).float().cuda()
clip_model_temp_image = load_clip_to_cpu(cfg, True)
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
self.ZS_image_encoder = clip_model_temp_image.visual
# Now pre-compute the frozen VL embeddings
all_teacher_features = []
# Using multiple text templates to ensure textual diversity during training
for single_template in IMAGENET_TEMPLATES:
x = [single_template.replace("{}", name) for name in classnames]
x_tokenized = torch.cat([clip.tokenize(p) for p in x])
text_features = clip_model_temp.encode_text(x_tokenized.cuda())
all_teacher_features.append(text_features.unsqueeze(1))
self.fixed_embeddings = torch.cat(all_teacher_features, dim=1).mean(dim=1)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
def construct_prompts(self, ctx, prefix, suffix, label=None):
# dim0 is either batch_size (during training) or n_cls (during testing)
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
if label is not None:
prefix = prefix[label]
suffix = suffix[label]
prompts = torch.cat(
[
prefix, # (dim0, 1, dim)
ctx, # (dim0, n_ctx, dim)
suffix, # (dim0, *, dim)
],
dim=1,
)
return prompts
def forward(self):
ctx = self.ctx
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
prefix = self.token_prefix
suffix = self.token_suffix
prompts = self.construct_prompts(ctx, prefix, suffix)
return prompts
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = VLPromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
self.total_epochs = cfg.OPTIM.MAX_EPOCH
self.n_cls = len(classnames)
def forward(self, image, label=None):
tokenized_prompts = self.tokenized_prompts
logit_scale = self.logit_scale.exp()
prompts = self.prompt_learner()
# Compute the prompted image and text features
text_features = self.text_encoder(prompts, tokenized_prompts)
image_features = self.image_encoder(image.type(self.dtype))
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# Compute the prompted logits
logits = logit_scale * image_features @ text_features.t()
if self.prompt_learner.training:
# Now calculate the frozen pre-trained features
fixed_embeddings = self.prompt_learner.fixed_embeddings # precomputed pre-trained frozen textual features
fixed_embeddings = fixed_embeddings / fixed_embeddings.norm(dim=-1, keepdim=True)
with torch.no_grad():
zero_shot_features = self.prompt_learner.ZS_image_encoder(image.type(self.dtype))
zero_shot_features = zero_shot_features / zero_shot_features.norm(dim=-1, keepdim=True)
# Compute pre-trained frozen visual features
zero_shot_logits = logit_scale * zero_shot_features.cuda() @ fixed_embeddings.half().cuda().t()
return F.cross_entropy(logits,
label), text_features, fixed_embeddings, zero_shot_features, \
image_features, zero_shot_logits, logits
else:
return logits
@TRAINER_REGISTRY.register()
class PromptSRC(TrainerX):
def check_cfg(self, cfg):
assert cfg.TRAINER.PROMPTSRC.PREC in ["fp16", "fp32", "amp"]
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
if cfg.TRAINER.PROMPTSRC.PREC == "fp32" or cfg.TRAINER.PROMPTSRC.PREC == "amp":
# CLIP's default precision is fp16
clip_model.float()
print("Building custom CLIP")
self.model = CustomCLIP(cfg, classnames, clip_model)
print("Turning off gradients in both the image and the text encoder")
name_to_update = "prompt_learner"
for name, param in self.model.named_parameters():
if name_to_update not in name:
# Make sure that VPT prompts are updated
if "VPT" in name:
param.requires_grad_(True)
else:
param.requires_grad_(False)
else:
if "ZS_image_encoder" in name:
param.requires_grad_(False)
# Double check
enabled = set()
for name, param in self.model.named_parameters():
if param.requires_grad:
enabled.add(name)
print(f"Parameters to be updated: {enabled}")
print(f"Parameters count: {len(enabled)}")
if cfg.MODEL.INIT_WEIGHTS:
load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model, cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("VLPromptLearner", self.model, self.optim, self.sched)
# Cosine scheduler
self.total_epochs = cfg.OPTIM.MAX_EPOCH
self.step_counter = 1
N = cfg.OPTIM.MAX_EPOCH
mean = cfg.TRAINER.PROMPTSRC.GPA_MEAN
stdev = cfg.TRAINER.PROMPTSRC.GPA_STD
gauss = self.get_gauss(mean, stdev)
self.gauss = np.array([gauss(a) for a in range(1, N + 1)])
self.gauss = self.gauss / sum(self.gauss)
self.scaler = GradScaler() if cfg.TRAINER.PROMPTSRC.PREC == "amp" else None
# Note that multi-gpu training could be slow because CLIP's size is
# big, which slows down the copy operation in DataParallel
device_count = torch.cuda.device_count()
if device_count > 1:
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
self.model = nn.DataParallel(self.model)
# Keep model with GPA
self.previous_model_gpa = None
def forward_backward(self, batch):
image, label = self.parse_batch_train(batch)
model = self.model
optim = self.optim
scaler = self.scaler
prec = self.cfg.TRAINER.PROMPTSRC.PREC
if prec == "amp":
with autocast():
loss = model(image, label)
optim.zero_grad()
scaler.scale(loss).backward()
scaler.step(optim)
scaler.update()
else:
loss_ce, normalized_text_features, zs_clip_text_embeddings, zs_image_embedd, image_ft, \
zero_shot_logits, logits = model(image, label)
# Calculate the L_SCL_text loss
loss_scl_text = F.l1_loss(normalized_text_features, zs_clip_text_embeddings.cuda(),
reduction='mean') * self.cfg.TRAINER.PROMPTSRC.TEXT_LOSS_WEIGHT
# Calculate the L_SCL_image loss
loss_scl_image = F.l1_loss(image_ft, zs_image_embedd.cuda(),
reduction='mean') * self.cfg.TRAINER.PROMPTSRC.IMAGE_LOSS_WEIGHT
# Now calculate L_SCL_logits
L_SCL_logits = F.kl_div(
F.log_softmax(logits / 1, dim=1),
F.log_softmax(zero_shot_logits / 1, dim=1),
reduction='sum',
log_target=True
) * (1 * 1) / logits.numel()
L_SCL = (L_SCL_logits + loss_scl_text + loss_scl_image)
loss = (loss_ce + L_SCL)
optim.zero_grad()
loss.backward()
optim.step()
loss_summary = {"loss": loss.item()}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
# Means one epoch is completed, perform GPA
self.step_counter = self.step_counter + 1
current_epoch_weight = self.gauss[self.step_counter - 2]
current_model_weights = copy.deepcopy(model.state_dict())
weighted_state_dict = self.state_dict_weighting(current_model_weights, current_epoch_weight)
if self.previous_model_gpa is None:
self.previous_model_gpa = weighted_state_dict
else:
self.previous_model_gpa = self.state_dict_add(weighted_state_dict, self.previous_model_gpa)
if self.step_counter == self.model.total_epochs + 1:
print("Using GPA model for final inference...")
model.load_state_dict(self.previous_model_gpa)
self.model.load_state_dict(self.previous_model_gpa)
return loss_summary
def state_dict_weighting(self, main_dict, weightage, prompt_only=False):
# Average all parameters
updated_dict = copy.deepcopy(main_dict)
if not prompt_only:
for key in main_dict:
updated_dict[key] = main_dict[key] * weightage
return updated_dict
else:
return main_dict * weightage
def state_dict_add(self, dict1, dict2, prompt_only=False):
# Average all parameters
if not prompt_only:
modified_dict = dict2
for key in dict1:
modified_dict[key] = (modified_dict[key] + dict1[key])
return modified_dict
else:
return dict1 + dict2
def get_gauss(self, mu, sigma):
gauss = lambda x: (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mu) / sigma) ** 2)
return gauss
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label
def load_model(self, directory, epoch=None):
if not directory:
print("Note that load_model() is skipped as no pretrained model is given")
return
names = self.get_model_names()
# By default, the best model is loaded
model_file = "model-best.pth.tar"
if epoch is not None:
model_file = "model.pth.tar-" + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint["state_dict"]
epoch = checkpoint["epoch"]
# Ignore fixed token vectors
if "prompt_learner.token_prefix" in state_dict:
del state_dict["prompt_learner.token_prefix"]
if "prompt_learner.token_suffix" in state_dict:
del state_dict["prompt_learner.token_suffix"]
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
# set strict=False
self._models[name].load_state_dict(state_dict, strict=False)

99
trainers/zsclip.py Normal file
View File

@@ -0,0 +1,99 @@
import torch
import torch.nn as nn
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.model import convert_weights
from .coop import load_clip_to_cpu
from .imagenet_templates import IMAGENET_TEMPLATES, IMAGENET_TEMPLATES_SELECT
CUSTOM_TEMPLATES = {
"OxfordPets": "a photo of a {}, a type of pet.",
"OxfordFlowers": "a photo of a {}, a type of flower.",
"FGVCAircraft": "a photo of a {}, a type of aircraft.",
"DescribableTextures": "{} texture.",
"EuroSAT": "a centered satellite photo of {}.",
"StanfordCars": "a photo of a {}.",
"Food101": "a photo of {}, a type of food.",
"SUN397": "a photo of a {}.",
"Caltech101": "a photo of a {}.",
"UCF101": "a photo of a person doing {}.",
"ImageNet": "a photo of a {}.",
"ImageNetSketch": "a photo of a {}.",
"ImageNetV2": "a photo of a {}.",
"ImageNetA": "a photo of a {}.",
"ImageNetR": "a photo of a {}.",
}
@TRAINER_REGISTRY.register()
class ZeroshotCLIP(TrainerX):
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
clip_model.to(self.device)
temp = CUSTOM_TEMPLATES[cfg.DATASET.NAME]
prompts = [temp.format(c.replace("_", " ")) for c in classnames]
print(f"Prompts: {prompts}")
prompts = torch.cat([clip.tokenize(p) for p in prompts])
prompts = prompts.to(self.device)
with torch.no_grad():
text_features = clip_model.encode_text(prompts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
self.text_features = text_features
self.clip_model = clip_model
def model_inference(self, image):
image_features = self.clip_model.encode_image(image)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
logit_scale = self.clip_model.logit_scale.exp()
logits = logit_scale * image_features @ self.text_features.t()
return logits
@TRAINER_REGISTRY.register()
class ZeroshotCLIP2(ZeroshotCLIP):
"""Prompt ensembling."""
# templates = IMAGENET_TEMPLATES
templates = IMAGENET_TEMPLATES_SELECT
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
clip_model.to(self.device)
for params in clip_model.parameters():
params.requires_grad_(False)
# add custom-made prompt
if cfg.DATASET.NAME != "ImageNet":
self.templates += [CUSTOM_TEMPLATES[cfg.DATASET.NAME]]
num_temp = len(self.templates)
print(f"Prompt ensembling (n={num_temp})")
mean_text_features = 0
for i, temp in enumerate(self.templates):
prompts = [temp.format(c.replace("_", " ")) for c in classnames]
prompts = torch.cat([clip.tokenize(p) for p in prompts]).to(self.device)
text_features = clip_model.encode_text(prompts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
mean_text_features = mean_text_features + text_features
mean_text_features = mean_text_features / num_temp
mean_text_features = mean_text_features / mean_text_features.norm(dim=-1, keepdim=True)
self.text_features = mean_text_features
self.clip_model = clip_model