242 lines
7.7 KiB
Python
242 lines
7.7 KiB
Python
import argparse
|
|
import torch
|
|
|
|
from dassl.utils import setup_logger, set_random_seed, collect_env_info
|
|
from dassl.config import get_cfg_default
|
|
from dassl.engine import build_trainer
|
|
|
|
# custom
|
|
import datasets.oxford_pets
|
|
import datasets.oxford_flowers
|
|
import datasets.fgvc_aircraft
|
|
import datasets.dtd
|
|
import datasets.eurosat
|
|
import datasets.stanford_cars
|
|
import datasets.food101
|
|
import datasets.sun397
|
|
import datasets.caltech101
|
|
import datasets.ucf101
|
|
import datasets.imagenet
|
|
|
|
import datasets.imagenet_sketch
|
|
import datasets.imagenetv2
|
|
import datasets.imagenet_a
|
|
import datasets.imagenet_r
|
|
|
|
import trainers.coop
|
|
import trainers.cocoop
|
|
import trainers.zsclip
|
|
import trainers.maple
|
|
import trainers.independentVL
|
|
import trainers.promptsrc
|
|
|
|
|
|
def print_args(args, cfg):
|
|
print("***************")
|
|
print("** Arguments **")
|
|
print("***************")
|
|
optkeys = list(args.__dict__.keys())
|
|
optkeys.sort()
|
|
for key in optkeys:
|
|
print("{}: {}".format(key, args.__dict__[key]))
|
|
print("************")
|
|
print("** Config **")
|
|
print("************")
|
|
print(cfg)
|
|
|
|
|
|
def reset_cfg(cfg, args):
|
|
if args.root:
|
|
cfg.DATASET.ROOT = args.root
|
|
|
|
if args.output_dir:
|
|
cfg.OUTPUT_DIR = args.output_dir
|
|
|
|
if args.resume:
|
|
cfg.RESUME = args.resume
|
|
|
|
if args.seed:
|
|
cfg.SEED = args.seed
|
|
|
|
if args.source_domains:
|
|
cfg.DATASET.SOURCE_DOMAINS = args.source_domains
|
|
|
|
if args.target_domains:
|
|
cfg.DATASET.TARGET_DOMAINS = args.target_domains
|
|
|
|
if args.transforms:
|
|
cfg.INPUT.TRANSFORMS = args.transforms
|
|
|
|
if args.trainer:
|
|
cfg.TRAINER.NAME = args.trainer
|
|
|
|
if args.backbone:
|
|
cfg.MODEL.BACKBONE.NAME = args.backbone
|
|
|
|
if args.head:
|
|
cfg.MODEL.HEAD.NAME = args.head
|
|
|
|
|
|
def extend_cfg(cfg):
|
|
"""
|
|
Add new config variables.
|
|
|
|
E.g.
|
|
from yacs.config import CfgNode as CN
|
|
cfg.TRAINER.MY_MODEL = CN()
|
|
cfg.TRAINER.MY_MODEL.PARAM_A = 1.
|
|
cfg.TRAINER.MY_MODEL.PARAM_B = 0.5
|
|
cfg.TRAINER.MY_MODEL.PARAM_C = False
|
|
"""
|
|
from yacs.config import CfgNode as CN
|
|
|
|
cfg.TRAINER.COOP = CN()
|
|
cfg.TRAINER.COOP.N_CTX = 16 # number of context vectors
|
|
cfg.TRAINER.COOP.CSC = False # class-specific context
|
|
cfg.TRAINER.COOP.CTX_INIT = "" # initialization words
|
|
cfg.TRAINER.COOP.PREC = "fp16" # fp16, fp32, amp
|
|
cfg.TRAINER.COOP.CLASS_TOKEN_POSITION = "end" # 'middle' or 'end' or 'front'
|
|
|
|
cfg.TRAINER.COCOOP = CN()
|
|
cfg.TRAINER.COCOOP.N_CTX = 16 # number of context vectors
|
|
cfg.TRAINER.COCOOP.CTX_INIT = "" # initialization words
|
|
cfg.TRAINER.COCOOP.PREC = "fp16" # fp16, fp32, amp
|
|
|
|
# Config for MaPLe
|
|
cfg.TRAINER.MAPLE = CN()
|
|
cfg.TRAINER.MAPLE.N_CTX = 2 # number of context vectors
|
|
cfg.TRAINER.MAPLE.CTX_INIT = "a photo of a" # initialization words
|
|
cfg.TRAINER.MAPLE.PREC = "fp16" # fp16, fp32, amp
|
|
cfg.TRAINER.MAPLE.PROMPT_DEPTH = 9 # Max 12, minimum 0, for 1 it will act as shallow MaPLe (J=1)
|
|
cfg.DATASET.SUBSAMPLE_CLASSES = "all" # all, base or new
|
|
|
|
# Config for PromptSRC
|
|
cfg.TRAINER.PROMPTSRC = CN()
|
|
cfg.TRAINER.PROMPTSRC.N_CTX_VISION = 4 # number of context vectors at the vision branch
|
|
cfg.TRAINER.PROMPTSRC.N_CTX_TEXT = 4 # number of context vectors at the language branch
|
|
cfg.TRAINER.PROMPTSRC.CTX_INIT = "a photo of a" # initialization words
|
|
cfg.TRAINER.PROMPTSRC.PREC = "fp16" # fp16, fp32, amp
|
|
cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_VISION = 9 # Max 12, minimum 0, for 0 it will be using shallow IVLP prompting (J=1)
|
|
cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_TEXT = 9 # Max 12, minimum 0, for 0 it will be using shallow IVLP prompting (J=1)
|
|
cfg.TRAINER.PROMPTSRC.TEXT_LOSS_WEIGHT = 25
|
|
cfg.TRAINER.PROMPTSRC.IMAGE_LOSS_WEIGHT = 10
|
|
cfg.TRAINER.PROMPTSRC.GPA_MEAN = 15
|
|
cfg.TRAINER.PROMPTSRC.GPA_STD = 1
|
|
cfg.DATASET.SUBSAMPLE_CLASSES = "all" # all, base or new
|
|
|
|
# Config for independent Vision Language prompting (independent-vlp)
|
|
cfg.TRAINER.IVLP = CN()
|
|
cfg.TRAINER.IVLP.N_CTX_VISION = 2 # number of context vectors at the vision branch
|
|
cfg.TRAINER.IVLP.N_CTX_TEXT = 2 # number of context vectors at the language branch
|
|
cfg.TRAINER.IVLP.CTX_INIT = "a photo of a" # initialization words (only for language prompts)
|
|
cfg.TRAINER.IVLP.PREC = "fp16" # fp16, fp32, amp
|
|
# If both variables below are set to 0, 0, will the config will degenerate to COOP model
|
|
cfg.TRAINER.IVLP.PROMPT_DEPTH_VISION = 9 # Max 12, minimum 0, for 0 it will act as shallow IVLP prompting (J=1)
|
|
cfg.TRAINER.IVLP.PROMPT_DEPTH_TEXT = 9 # Max 12, minimum 0, for 0 it will act as shallow IVLP prompting(J=1)
|
|
cfg.DATASET.SUBSAMPLE_CLASSES = "all" # all, base or new
|
|
|
|
|
|
def setup_cfg(args):
|
|
cfg = get_cfg_default()
|
|
extend_cfg(cfg)
|
|
|
|
# 1. From the dataset config file
|
|
if args.dataset_config_file:
|
|
cfg.merge_from_file(args.dataset_config_file)
|
|
|
|
# 2. From the method config file
|
|
if args.config_file:
|
|
cfg.merge_from_file(args.config_file)
|
|
|
|
# 3. From input arguments
|
|
reset_cfg(cfg, args)
|
|
|
|
# 4. From optional input arguments
|
|
cfg.merge_from_list(args.opts)
|
|
|
|
cfg.freeze()
|
|
|
|
return cfg
|
|
|
|
|
|
def main(args):
|
|
cfg = setup_cfg(args)
|
|
if cfg.SEED >= 0:
|
|
print("Setting fixed seed: {}".format(cfg.SEED))
|
|
set_random_seed(cfg.SEED)
|
|
setup_logger(cfg.OUTPUT_DIR)
|
|
|
|
if torch.cuda.is_available() and cfg.USE_CUDA:
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
print_args(args, cfg)
|
|
print("Collecting env info ...")
|
|
print("** System info **\n{}\n".format(collect_env_info()))
|
|
|
|
trainer = build_trainer(cfg)
|
|
|
|
if args.eval_only:
|
|
trainer.load_model(args.model_dir, epoch=args.load_epoch)
|
|
trainer.test()
|
|
return
|
|
|
|
if not args.no_train:
|
|
trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--root", type=str, default="", help="path to dataset")
|
|
parser.add_argument("--output-dir", type=str, default="", help="output directory")
|
|
parser.add_argument(
|
|
"--resume",
|
|
type=str,
|
|
default="",
|
|
help="checkpoint directory (from which the training resumes)",
|
|
)
|
|
parser.add_argument(
|
|
"--seed", type=int, default=-1, help="only positive value enables a fixed seed"
|
|
)
|
|
parser.add_argument(
|
|
"--source-domains", type=str, nargs="+", help="source domains for DA/DG"
|
|
)
|
|
parser.add_argument(
|
|
"--target-domains", type=str, nargs="+", help="target domains for DA/DG"
|
|
)
|
|
parser.add_argument(
|
|
"--transforms", type=str, nargs="+", help="data augmentation methods"
|
|
)
|
|
parser.add_argument(
|
|
"--config-file", type=str, default="", help="path to config file"
|
|
)
|
|
parser.add_argument(
|
|
"--dataset-config-file",
|
|
type=str,
|
|
default="",
|
|
help="path to config file for dataset setup",
|
|
)
|
|
parser.add_argument("--trainer", type=str, default="", help="name of trainer")
|
|
parser.add_argument("--backbone", type=str, default="", help="name of CNN backbone")
|
|
parser.add_argument("--head", type=str, default="", help="name of head")
|
|
parser.add_argument("--eval-only", action="store_true", help="evaluation only")
|
|
parser.add_argument(
|
|
"--model-dir",
|
|
type=str,
|
|
default="",
|
|
help="load model from this directory for eval-only mode",
|
|
)
|
|
parser.add_argument(
|
|
"--load-epoch", type=int, help="load model weights at this epoch for evaluation"
|
|
)
|
|
parser.add_argument(
|
|
"--no-train", action="store_true", help="do not call trainer.train()"
|
|
)
|
|
parser.add_argument(
|
|
"opts",
|
|
default=None,
|
|
nargs=argparse.REMAINDER,
|
|
help="modify config options using the command-line",
|
|
)
|
|
args = parser.parse_args()
|
|
main(args)
|