92 lines
3.6 KiB
Python
92 lines
3.6 KiB
Python
import os
|
|
import pickle
|
|
from collections import OrderedDict
|
|
|
|
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
|
|
from dassl.utils import listdir_nohidden, mkdir_if_missing
|
|
|
|
from .oxford_pets import OxfordPets
|
|
|
|
|
|
@DATASET_REGISTRY.register()
|
|
class ImageNet(DatasetBase):
|
|
|
|
dataset_dir = "imagenet"
|
|
|
|
def __init__(self, cfg):
|
|
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
|
|
self.dataset_dir = os.path.join(root, self.dataset_dir)
|
|
self.image_dir = os.path.join(self.dataset_dir, "images")
|
|
self.preprocessed = os.path.join(self.dataset_dir, "preprocessed.pkl")
|
|
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
|
|
mkdir_if_missing(self.split_fewshot_dir)
|
|
|
|
if os.path.exists(self.preprocessed):
|
|
with open(self.preprocessed, "rb") as f:
|
|
preprocessed = pickle.load(f)
|
|
train = preprocessed["train"]
|
|
test = preprocessed["test"]
|
|
else:
|
|
text_file = os.path.join(self.dataset_dir, "classnames.txt")
|
|
classnames = self.read_classnames(text_file)
|
|
train = self.read_data(classnames, "train")
|
|
# Follow standard practice to perform evaluation on the val set
|
|
# Also used as the val set (so evaluate the last-step model)
|
|
test = self.read_data(classnames, "val")
|
|
|
|
preprocessed = {"train": train, "test": test}
|
|
with open(self.preprocessed, "wb") as f:
|
|
pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
num_shots = cfg.DATASET.NUM_SHOTS
|
|
if num_shots >= 1:
|
|
seed = cfg.SEED
|
|
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
|
|
|
|
if os.path.exists(preprocessed):
|
|
print(f"Loading preprocessed few-shot data from {preprocessed}")
|
|
with open(preprocessed, "rb") as file:
|
|
data = pickle.load(file)
|
|
train = data["train"]
|
|
else:
|
|
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
|
|
data = {"train": train}
|
|
print(f"Saving preprocessed few-shot data to {preprocessed}")
|
|
with open(preprocessed, "wb") as file:
|
|
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
|
|
|
|
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
|
|
train, test = OxfordPets.subsample_classes(train, test, subsample=subsample)
|
|
|
|
super().__init__(train_x=train, val=test, test=test)
|
|
|
|
@staticmethod
|
|
def read_classnames(text_file):
|
|
"""Return a dictionary containing
|
|
key-value pairs of <folder name>: <class name>.
|
|
"""
|
|
classnames = OrderedDict()
|
|
with open(text_file, "r") as f:
|
|
lines = f.readlines()
|
|
for line in lines:
|
|
line = line.strip().split(" ")
|
|
folder = line[0]
|
|
classname = " ".join(line[1:])
|
|
classnames[folder] = classname
|
|
return classnames
|
|
|
|
def read_data(self, classnames, split_dir):
|
|
split_dir = os.path.join(self.image_dir, split_dir)
|
|
folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir())
|
|
items = []
|
|
|
|
for label, folder in enumerate(folders):
|
|
imnames = listdir_nohidden(os.path.join(split_dir, folder))
|
|
classname = classnames[folder]
|
|
for imname in imnames:
|
|
impath = os.path.join(split_dir, folder, imname)
|
|
item = Datum(impath=impath, label=label, classname=classname)
|
|
items.append(item)
|
|
|
|
return items
|