Files
PromptSRC/lpclip/linear_probe.py
2023-07-13 23:43:31 +05:00

130 lines
5.7 KiB
Python

import numpy as np
import os
from sklearn.linear_model import LogisticRegression
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="", help="path to dataset")
parser.add_argument("--num_step", type=int, default=8, help="number of steps")
parser.add_argument("--num_run", type=int, default=10, help="number of runs")
parser.add_argument("--feature_dir", type=str, default="clip_feat", help="feature dir path")
args = parser.parse_args()
dataset = args.dataset
dataset_path = os.path.join(f"{args.feature_dir}", dataset)
train_file = np.load(os.path.join(dataset_path, "train.npz"))
train_feature, train_label = train_file["feature_list"], train_file["label_list"]
val_file = np.load(os.path.join(dataset_path, "val.npz"))
val_feature, val_label = val_file["feature_list"], val_file["label_list"]
test_file = np.load(os.path.join(dataset_path, "test.npz"))
test_feature, test_label = test_file["feature_list"], test_file["label_list"]
os.makedirs("report", exist_ok=True)
val_shot_list = {1: 1, 2: 2, 4: 4, 8: 4, 16: 4}
for num_shot in [1, 2, 4, 8, 16]:
test_acc_step_list = np.zeros([args.num_run, args.num_step])
for seed in range(1, args.num_run + 1):
np.random.seed(seed)
print(f"-- Seed: {seed} --------------------------------------------------------------")
# Sampling
all_label_list = np.unique(train_label)
selected_idx_list = []
for label in all_label_list:
label_collection = np.where(train_label == label)[0]
selected_idx = np.random.choice(label_collection, size=num_shot, replace=False)
selected_idx_list.extend(selected_idx)
fewshot_train_feature = train_feature[selected_idx_list]
fewshot_train_label = train_label[selected_idx_list]
val_num_shot = val_shot_list[num_shot]
val_selected_idx_list = []
for label in all_label_list:
label_collection = np.where(val_label == label)[0]
selected_idx = np.random.choice(label_collection, size=val_num_shot, replace=False)
val_selected_idx_list.extend(selected_idx)
fewshot_val_feature = val_feature[val_selected_idx_list]
fewshot_val_label = val_label[val_selected_idx_list]
# search initialization
search_list = [1e6, 1e4, 1e2, 1, 1e-2, 1e-4, 1e-6]
acc_list = []
for c_weight in search_list:
clf = LogisticRegression(solver="lbfgs", max_iter=1000, penalty="l2", C=c_weight).fit(fewshot_train_feature, fewshot_train_label)
pred = clf.predict(fewshot_val_feature)
acc_val = sum(pred == fewshot_val_label) / len(fewshot_val_label)
acc_list.append(acc_val)
print(acc_list, flush=True)
# binary search
peak_idx = np.argmax(acc_list)
c_peak = search_list[peak_idx]
c_left, c_right = 1e-1 * c_peak, 1e1 * c_peak
def binary_search(c_left, c_right, seed, step, test_acc_step_list):
clf_left = LogisticRegression(solver="lbfgs", max_iter=1000, penalty="l2", C=c_left).fit(fewshot_train_feature, fewshot_train_label)
pred_left = clf_left.predict(fewshot_val_feature)
acc_left = sum(pred_left == fewshot_val_label) / len(fewshot_val_label)
print("Val accuracy (Left): {:.2f}".format(100 * acc_left), flush=True)
clf_right = LogisticRegression(solver="lbfgs", max_iter=1000, penalty="l2", C=c_right).fit(fewshot_train_feature, fewshot_train_label)
pred_right = clf_right.predict(fewshot_val_feature)
acc_right = sum(pred_right == fewshot_val_label) / len(fewshot_val_label)
print("Val accuracy (Right): {:.2f}".format(100 * acc_right), flush=True)
# find maximum and update ranges
if acc_left < acc_right:
c_final = c_right
clf_final = clf_right
# range for the next step
c_left = 0.5 * (np.log10(c_right) + np.log10(c_left))
c_right = np.log10(c_right)
else:
c_final = c_left
clf_final = clf_left
# range for the next step
c_right = 0.5 * (np.log10(c_right) + np.log10(c_left))
c_left = np.log10(c_left)
pred = clf_final.predict(test_feature)
test_acc = 100 * sum(pred == test_label) / len(pred)
print("Test Accuracy: {:.2f}".format(test_acc), flush=True)
test_acc_step_list[seed - 1, step] = test_acc
saveline = "{}, seed {}, {} shot, weight {}, test_acc {:.2f}\n".format(dataset, seed, num_shot, c_final, test_acc)
with open(
"./report/{}_s{}r{}_details.txt".format(args.feature_dir, args.num_step, args.num_run),
"a+",
) as writer:
writer.write(saveline)
return (
np.power(10, c_left),
np.power(10, c_right),
seed,
step,
test_acc_step_list,
)
for step in range(args.num_step):
print(
f"{dataset}, {num_shot} Shot, Round {step}: {c_left}/{c_right}",
flush=True,
)
c_left, c_right, seed, step, test_acc_step_list = binary_search(c_left, c_right, seed, step, test_acc_step_list)
# save results of last step
test_acc_list = test_acc_step_list[:, -1]
acc_mean = np.mean(test_acc_list)
acc_std = np.std(test_acc_list)
save_line = "{}, {} Shot, Test acc stat: {:.2f} ({:.2f})\n".format(dataset, num_shot, acc_mean, acc_std)
print(save_line, flush=True)
with open(
"./report/{}_s{}r{}.txt".format(args.feature_dir, args.num_step, args.num_run),
"a+",
) as writer:
writer.write(save_line)