120 lines
3.8 KiB
Python
120 lines
3.8 KiB
Python
import os
|
||
import re
|
||
from glob import glob
|
||
from collections import defaultdict
|
||
|
||
def extract_accuracy(log_path):
|
||
"""从日志文件中提取accuracy"""
|
||
try:
|
||
with open(log_path, 'r') as f:
|
||
content = f.read()
|
||
match = re.search(r'\* accuracy: (\d+\.\d+)%', content)
|
||
if match:
|
||
return float(match.group(1))
|
||
except:
|
||
pass
|
||
return None
|
||
|
||
def collect_model_results(root_dir, target_model):
|
||
"""收集指定模型在所有数据集上的结果,z按seed分组"""
|
||
results = {
|
||
'base': defaultdict(list), # 使用列表存储多个seed的结果
|
||
'new': defaultdict(list),
|
||
'datasets': set()
|
||
}
|
||
# 查找所有base训练的log文件
|
||
base_logs = glob(os.path.join(root_dir, '**/train_base/**/log.txt'), recursive=True)
|
||
for log_path in base_logs:
|
||
parts = log_path.split(os.sep)
|
||
dataset = parts[-6]
|
||
model = parts[-4]
|
||
|
||
if model != target_model:
|
||
continue
|
||
|
||
accuracy = extract_accuracy(log_path)
|
||
if accuracy is not None:
|
||
results['base'][dataset].append(accuracy)
|
||
results['datasets'].add(dataset)
|
||
|
||
# 查找所有new测试的log文件
|
||
new_logs = glob(os.path.join(root_dir, '**/test_new/**/log.txt'), recursive=True)
|
||
for log_path in new_logs:
|
||
parts = log_path.split(os.sep)
|
||
dataset = parts[-6]
|
||
model = parts[-4]
|
||
|
||
if model != target_model:
|
||
continue
|
||
|
||
accuracy = extract_accuracy(log_path)
|
||
if accuracy is not None:
|
||
results['new'][dataset].append(accuracy)
|
||
results['datasets'].add(dataset)
|
||
|
||
return results
|
||
|
||
def calculate_harmonic_mean(base, new):
|
||
"""计算调和平均数"""
|
||
if base == 0 or new == 0:
|
||
return 0
|
||
return 2 * base * new / (base + new)
|
||
|
||
def calculate_average(values):
|
||
"""计算平均值"""
|
||
if not values:
|
||
return None
|
||
return sum(values) / len(values)
|
||
|
||
def print_model_results(results, model_name):
|
||
"""打印指定模型在所有数据集上的结果(平均所有seed)"""
|
||
datasets = sorted(results['datasets'])
|
||
|
||
# 准备数据用于计算总体平均值
|
||
base_sum = 0
|
||
new_sum = 0
|
||
valid_datasets = 0
|
||
|
||
print(f"\nResults for model: {model_name}")
|
||
print(f"{'Dataset':<15} {'Base':<10} {'New':<10} {'H':<10} {'Seeds':<10}")
|
||
print("-" * 60)
|
||
|
||
for dataset in datasets:
|
||
base_accs = results['base'].get(dataset, [])
|
||
new_accs = results['new'].get(dataset, [0.0, 0.0, 0.0])
|
||
|
||
if base_accs and new_accs:
|
||
avg_base = calculate_average(base_accs)
|
||
avg_new = calculate_average(new_accs)
|
||
h = calculate_harmonic_mean(avg_base, avg_new)
|
||
|
||
# 获取seed数量(取base和new中较小的seed数)
|
||
num_seeds = min(len(base_accs), len(new_accs))
|
||
|
||
print(f"{dataset:<15} {avg_base:.2f}{'':<6} {avg_new:.2f}{'':<6} {h:.2f}{'':<6} {num_seeds}")
|
||
|
||
base_sum += avg_base
|
||
new_sum += avg_new
|
||
valid_datasets += 1
|
||
|
||
# 计算并打印总体平均值
|
||
if valid_datasets > 0:
|
||
avg_base = base_sum / valid_datasets
|
||
avg_new = new_sum / valid_datasets
|
||
avg_h = calculate_harmonic_mean(avg_base, avg_new)
|
||
print("-" * 60)
|
||
print(f"{'Average':<15} {avg_base:.2f}{'':<6} {avg_new:.2f}{'':<6} {avg_h:.2f}")
|
||
else:
|
||
print("No complete dataset results found for this model.")
|
||
|
||
def main():
|
||
root_dir = 'output' # 修改为你的output目录路径
|
||
target_model = 'PromptSRC' # 指定要分析的模型
|
||
|
||
results = collect_model_results(root_dir, target_model)
|
||
print_model_results(results, target_model)
|
||
|
||
if __name__ == '__main__':
|
||
main()
|
||
|