Files
PromptSRC/trainers/promptsrc.py
2026-02-04 01:03:23 +08:00

411 lines
17 KiB
Python

import copy
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.cuda.amp import GradScaler, autocast
import json
from dassl.engine import TRAINER_REGISTRY, TrainerX
from dassl.utils import load_pretrained_weights, load_checkpoint
from dassl.optim import build_optimizer, build_lr_scheduler
from clip import clip
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
_tokenizer = _Tokenizer()
DESC_LLM = "gpt-4.1"
DESC_TOPK = 4
def load_clip_to_cpu(cfg, zero_shot_model=False):
backbone_name = cfg.MODEL.BACKBONE.NAME
url = clip._MODELS[backbone_name]
model_path = clip._download(url)
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = None
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
if not zero_shot_model:
design_details = {"trainer": 'IVLP',
"vision_depth": cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_VISION,
"language_depth": cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_TEXT,
"vision_ctx": cfg.TRAINER.PROMPTSRC.N_CTX_VISION,
"language_ctx": cfg.TRAINER.PROMPTSRC.N_CTX_TEXT}
model = clip.build_model(state_dict or model.state_dict(), design_details)
else:
# Return original CLIP model for generating frozen VL features
design_details = {"trainer": 'IVLP',
"vision_depth": 0,
"language_depth": 0, "vision_ctx": 0,
"language_ctx": 0}
model = clip.build_model(state_dict or model.state_dict(), design_details)
return model
return model
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
self.dtype = clip_model.dtype
def forward(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class VLPromptLearner(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
n_cls = len(classnames)
# Make sure Language depth >= 1
assert cfg.TRAINER.PROMPTSRC.PROMPT_DEPTH_TEXT >= 1, "In Independent VL prompting, Language prompt depth should be >=1" \
"\nPlease use VPT trainer if you want to learn only vision " \
"branch"
n_ctx = cfg.TRAINER.PROMPTSRC.N_CTX_TEXT
ctx_init = cfg.TRAINER.PROMPTSRC.CTX_INIT
dtype = clip_model.dtype
ctx_dim = clip_model.ln_final.weight.shape[0]
clip_imsize = clip_model.visual.input_resolution
cfg_imsize = cfg.INPUT.SIZE[0]
assert cfg_imsize == clip_imsize, f"cfg_imsize ({cfg_imsize}) must equal to clip_imsize ({clip_imsize})"
if ctx_init and n_ctx <= 4:
# use given words to initialize context vectors
ctx_init = ctx_init.replace("_", " ")
n_ctx = n_ctx
prompt = clip.tokenize(ctx_init)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1: 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
# random initialization
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
print(f"Independent V-L design")
print(f'Initial text context: "{prompt_prefix}"')
print(f"Number of context words (tokens) for Language prompting: {n_ctx}")
print(f"Number of context words (tokens) for Vision prompting: {cfg.TRAINER.PROMPTSRC.N_CTX_VISION}")
self.ctx = nn.Parameter(ctx_vectors)
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
tokenized_prompts = torch.cat([clip.tokenize(p) for p in prompts]) # (n_cls, n_tkn)
# Also create frozen CLIP
clip_model_temp = load_clip_to_cpu(cfg, True).float().cuda()
clip_model_temp_image = load_clip_to_cpu(cfg, True)
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
self.ZS_image_encoder = clip_model_temp_image.visual
# Now pre-compute the frozen VL embeddings from LLM descriptions
all_teacher_features = []
desc_file = f"./desc/{DESC_LLM}/descriptions_top{DESC_TOPK}/{cfg.DATASET.NAME}.json"
with open(desc_file, "r") as f:
all_desc = json.load(f)
for cls in classnames:
cls_descs = [f"a photo of {cls}, {desc}" for desc in all_desc[cls]]
cls_token = torch.cat([clip.tokenize(cls_desc) for cls_desc in cls_descs]).cuda()
with torch.no_grad():
cls_feature = clip_model_temp.encode_text(cls_token)
cls_feature = cls_feature / cls_feature.norm(dim=-1, keepdim=True)
cls_feature = torch.mean(cls_feature, dim=0)
all_teacher_features.append(cls_feature)
self.fixed_embeddings = torch.stack(all_teacher_features)
print(f"Using LLM descriptions from: {desc_file}")
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS
self.n_cls = n_cls
self.n_ctx = n_ctx
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
def construct_prompts(self, ctx, prefix, suffix, label=None):
# dim0 is either batch_size (during training) or n_cls (during testing)
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
if label is not None:
prefix = prefix[label]
suffix = suffix[label]
prompts = torch.cat(
[
prefix, # (dim0, 1, dim)
ctx, # (dim0, n_ctx, dim)
suffix, # (dim0, *, dim)
],
dim=1,
)
return prompts
def forward(self):
ctx = self.ctx
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
prefix = self.token_prefix
suffix = self.token_suffix
prompts = self.construct_prompts(ctx, prefix, suffix)
return prompts
class CustomCLIP(nn.Module):
def __init__(self, cfg, classnames, clip_model):
super().__init__()
self.prompt_learner = VLPromptLearner(cfg, classnames, clip_model)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
self.dtype = clip_model.dtype
self.total_epochs = cfg.OPTIM.MAX_EPOCH
self.n_cls = len(classnames)
def forward(self, image, label=None):
tokenized_prompts = self.tokenized_prompts
logit_scale = self.logit_scale.exp()
prompts = self.prompt_learner()
# Compute the prompted image and text features
text_features = self.text_encoder(prompts, tokenized_prompts)
image_features = self.image_encoder(image.type(self.dtype))
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# Compute the prompted logits
logits = logit_scale * image_features @ text_features.t()
if self.prompt_learner.training:
# Now calculate the frozen pre-trained features
fixed_embeddings = self.prompt_learner.fixed_embeddings # precomputed pre-trained frozen textual features
fixed_embeddings = fixed_embeddings / fixed_embeddings.norm(dim=-1, keepdim=True)
with torch.no_grad():
zero_shot_features = self.prompt_learner.ZS_image_encoder(image.type(self.dtype))
zero_shot_features = zero_shot_features / zero_shot_features.norm(dim=-1, keepdim=True)
# Compute pre-trained frozen visual features
zero_shot_logits = logit_scale * zero_shot_features.cuda() @ fixed_embeddings.half().cuda().t()
return F.cross_entropy(logits,
label), text_features, fixed_embeddings, zero_shot_features, \
image_features, zero_shot_logits, logits
else:
return logits
@TRAINER_REGISTRY.register()
class PromptSRC(TrainerX):
def check_cfg(self, cfg):
assert cfg.TRAINER.PROMPTSRC.PREC in ["fp16", "fp32", "amp"]
def build_model(self):
cfg = self.cfg
classnames = self.dm.dataset.classnames
print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})")
clip_model = load_clip_to_cpu(cfg)
if cfg.TRAINER.PROMPTSRC.PREC == "fp32" or cfg.TRAINER.PROMPTSRC.PREC == "amp":
# CLIP's default precision is fp16
clip_model.float()
print("Building custom CLIP")
self.model = CustomCLIP(cfg, classnames, clip_model)
print("Turning off gradients in both the image and the text encoder")
name_to_update = "prompt_learner"
for name, param in self.model.named_parameters():
if name_to_update not in name:
# Make sure that VPT prompts are updated
if "VPT" in name:
param.requires_grad_(True)
else:
param.requires_grad_(False)
else:
if "ZS_image_encoder" in name:
param.requires_grad_(False)
# Double check
enabled = set()
for name, param in self.model.named_parameters():
if param.requires_grad:
enabled.add(name)
print(f"Parameters to be updated: {enabled}")
print(f"Parameters count: {len(enabled)}")
if cfg.MODEL.INIT_WEIGHTS:
load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS)
self.model.to(self.device)
# NOTE: only give prompt_learner to the optimizer
self.optim = build_optimizer(self.model, cfg.OPTIM)
self.sched = build_lr_scheduler(self.optim, cfg.OPTIM)
self.register_model("VLPromptLearner", self.model, self.optim, self.sched)
# Cosine scheduler
self.total_epochs = cfg.OPTIM.MAX_EPOCH
self.step_counter = 1
N = cfg.OPTIM.MAX_EPOCH
mean = cfg.TRAINER.PROMPTSRC.GPA_MEAN
stdev = cfg.TRAINER.PROMPTSRC.GPA_STD
gauss = self.get_gauss(mean, stdev)
self.gauss = np.array([gauss(a) for a in range(1, N + 1)])
self.gauss = self.gauss / sum(self.gauss)
self.scaler = GradScaler() if cfg.TRAINER.PROMPTSRC.PREC == "amp" else None
# Note that multi-gpu training could be slow because CLIP's size is
# big, which slows down the copy operation in DataParallel
device_count = torch.cuda.device_count()
if device_count > 1:
print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!")
self.model = nn.DataParallel(self.model)
# Keep model with GPA
self.previous_model_gpa = None
def forward_backward(self, batch):
image, label = self.parse_batch_train(batch)
model = self.model
optim = self.optim
scaler = self.scaler
prec = self.cfg.TRAINER.PROMPTSRC.PREC
if prec == "amp":
with autocast():
loss = model(image, label)
optim.zero_grad()
scaler.scale(loss).backward()
scaler.step(optim)
scaler.update()
else:
loss_ce, normalized_text_features, zs_clip_text_embeddings, zs_image_embedd, image_ft, \
zero_shot_logits, logits = model(image, label)
# Calculate the L_SCL_text loss
loss_scl_text = F.l1_loss(normalized_text_features, zs_clip_text_embeddings.cuda(),
reduction='mean') * self.cfg.TRAINER.PROMPTSRC.TEXT_LOSS_WEIGHT
# Calculate the L_SCL_image loss
loss_scl_image = F.l1_loss(image_ft, zs_image_embedd.cuda(),
reduction='mean') * self.cfg.TRAINER.PROMPTSRC.IMAGE_LOSS_WEIGHT
# Now calculate L_SCL_logits
L_SCL_logits = F.kl_div(
F.log_softmax(logits / 1, dim=1),
F.log_softmax(zero_shot_logits / 1, dim=1),
reduction='sum',
log_target=True
) * (1 * 1) / logits.numel()
L_SCL = (L_SCL_logits + loss_scl_text + loss_scl_image)
loss = (loss_ce + L_SCL)
optim.zero_grad()
loss.backward()
optim.step()
loss_summary = {"loss": loss.item()}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
# Means one epoch is completed, perform GPA
self.step_counter = self.step_counter + 1
current_epoch_weight = self.gauss[self.step_counter - 2]
current_model_weights = copy.deepcopy(model.state_dict())
weighted_state_dict = self.state_dict_weighting(current_model_weights, current_epoch_weight)
if self.previous_model_gpa is None:
self.previous_model_gpa = weighted_state_dict
else:
self.previous_model_gpa = self.state_dict_add(weighted_state_dict, self.previous_model_gpa)
if self.step_counter == self.model.total_epochs + 1:
print("Using GPA model for final inference...")
model.load_state_dict(self.previous_model_gpa)
self.model.load_state_dict(self.previous_model_gpa)
return loss_summary
def state_dict_weighting(self, main_dict, weightage, prompt_only=False):
# Average all parameters
updated_dict = copy.deepcopy(main_dict)
if not prompt_only:
for key in main_dict:
updated_dict[key] = main_dict[key] * weightage
return updated_dict
else:
return main_dict * weightage
def state_dict_add(self, dict1, dict2, prompt_only=False):
# Average all parameters
if not prompt_only:
modified_dict = dict2
for key in dict1:
modified_dict[key] = (modified_dict[key] + dict1[key])
return modified_dict
else:
return dict1 + dict2
def get_gauss(self, mu, sigma):
gauss = lambda x: (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mu) / sigma) ** 2)
return gauss
def parse_batch_train(self, batch):
input = batch["img"]
label = batch["label"]
input = input.to(self.device)
label = label.to(self.device)
return input, label
def load_model(self, directory, epoch=None):
if not directory:
print("Note that load_model() is skipped as no pretrained model is given")
return
names = self.get_model_names()
# By default, the best model is loaded
model_file = "model-best.pth.tar"
if epoch is not None:
model_file = "model.pth.tar-" + str(epoch)
for name in names:
model_path = osp.join(directory, name, model_file)
if not osp.exists(model_path):
raise FileNotFoundError('Model not found at "{}"'.format(model_path))
checkpoint = load_checkpoint(model_path)
state_dict = checkpoint["state_dict"]
epoch = checkpoint["epoch"]
# Ignore fixed token vectors
if "prompt_learner.token_prefix" in state_dict:
del state_dict["prompt_learner.token_prefix"]
if "prompt_learner.token_suffix" in state_dict:
del state_dict["prompt_learner.token_suffix"]
print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch))
# set strict=False
self._models[name].load_state_dict(state_dict, strict=False)