import os import random from scipy.io import loadmat from collections import defaultdict from .oxford_pets import OxfordPets from .utils import Datum, DatasetBase, read_json template = ['a photo of a {}, a type of flower.'] class OxfordFlowers(DatasetBase): dataset_dir = 'oxford_flowers' def __init__(self, root, num_shots): self.dataset_dir = os.path.join(root, self.dataset_dir) self.image_dir = os.path.join(self.dataset_dir, 'jpg') self.label_file = os.path.join(self.dataset_dir, 'imagelabels.mat') self.lab2cname_file = os.path.join(self.dataset_dir, 'cat_to_name.json') self.split_path = os.path.join(self.dataset_dir, 'split_zhou_OxfordFlowers.json') self.template = template train, val, test = OxfordPets.read_split(self.split_path, self.image_dir) train = self.generate_fewshot_dataset(train, num_shots=num_shots) super().__init__(train_x=train, val=val, test=test) def read_data(self): tracker = defaultdict(list) label_file = loadmat(self.label_file)['labels'][0] for i, label in enumerate(label_file): imname = f'image_{str(i + 1).zfill(5)}.jpg' impath = os.path.join(self.image_dir, imname) label = int(label) tracker[label].append(impath) print('Splitting data into 50% train, 20% val, and 30% test') def _collate(ims, y, c): items = [] for im in ims: item = Datum( impath=im, label=y-1, # convert to 0-based label classname=c ) items.append(item) return items lab2cname = read_json(self.lab2cname_file) train, val, test = [], [], [] for label, impaths in tracker.items(): random.shuffle(impaths) n_total = len(impaths) n_train = round(n_total * 0.5) n_val = round(n_total * 0.2) n_test = n_total - n_train - n_val assert n_train > 0 and n_val > 0 and n_test > 0 cname = lab2cname[str(label)] train.extend(_collate(impaths[:n_train], label, cname)) val.extend(_collate(impaths[n_train:n_train+n_val], label, cname)) test.extend(_collate(impaths[n_train+n_val:], label, cname)) return train, val, test