import os import random import os.path as osp import tarfile import zipfile from collections import defaultdict import gdown import json import torch from torch.utils.data import Dataset as TorchDataset import torchvision.transforms as T from PIL import Image def read_json(fpath): """Read json file from a path.""" with open(fpath, 'r') as f: obj = json.load(f) return obj def write_json(obj, fpath): """Writes to a json file.""" if not osp.exists(osp.dirname(fpath)): os.makedirs(osp.dirname(fpath)) with open(fpath, 'w') as f: json.dump(obj, f, indent=4, separators=(',', ': ')) def read_image(path): """Read image from path using ``PIL.Image``. Args: path (str): path to an image. Returns: PIL image """ if not osp.exists(path): raise IOError('No file exists at {}'.format(path)) while True: try: img = Image.open(path).convert('RGB') return img except IOError: print( 'Cannot read image from {}, ' 'probably due to heavy IO. Will re-try'.format(path) ) def listdir_nohidden(path, sort=False): """List non-hidden items in a directory. Args: path (str): directory path. sort (bool): sort the items. """ items = [f for f in os.listdir(path) if not f.startswith('.') and 'sh' not in f] if sort: items.sort() return items class Datum: """Data instance which defines the basic attributes. Args: impath (str): image path. label (int): class label. domain (int): domain label. classname (str): class name. """ def __init__(self, impath='', label=0, domain=-1, classname=''): assert isinstance(impath, str) assert isinstance(label, int) assert isinstance(domain, int) assert isinstance(classname, str) self._impath = impath self._label = label self._domain = domain self._classname = classname @property def impath(self): return self._impath @property def label(self): return self._label @property def domain(self): return self._domain @property def classname(self): return self._classname class DatasetBase: """A unified dataset class for 1) domain adaptation 2) domain generalization 3) semi-supervised learning """ dataset_dir = '' # the directory where the dataset is stored domains = [] # string names of all domains def __init__(self, train_x=None, train_u=None, val=None, test=None,t_sne=None): self._train_x = train_x # labeled training data self._train_u = train_u # unlabeled training data (optional) self._val = val # validation data (optional) self._test = test # test data self._num_classes = self.get_num_classes(train_x) self._lab2cname, self._classnames = self.get_lab2cname(train_x) @property def train_x(self): return self._train_x @property def train_u(self): return self._train_u @property def val(self): return self._val @property def test(self): return self._test @property def lab2cname(self): return self._lab2cname @property def classnames(self): return self._classnames @property def num_classes(self): return self._num_classes def get_num_classes(self, data_source): """Count number of classes. Args: data_source (list): a list of Datum objects. """ label_set = set() for item in data_source: label_set.add(item.label) return max(label_set) + 1 def get_lab2cname(self, data_source): """Get a label-to-classname mapping (dict). Args: data_source (list): a list of Datum objects. """ container = set() for item in data_source: container.add((item.label, item.classname)) mapping = {label: classname for label, classname in container} labels = list(mapping.keys()) labels.sort() classnames = [mapping[label] for label in labels] return mapping, classnames def check_input_domains(self, source_domains, target_domains): self.is_input_domain_valid(source_domains) self.is_input_domain_valid(target_domains) def is_input_domain_valid(self, input_domains): for domain in input_domains: if domain not in self.domains: raise ValueError( 'Input domain must belong to {}, ' 'but got [{}]'.format(self.domains, domain) ) def download_data(self, url, dst, from_gdrive=True): if not osp.exists(osp.dirname(dst)): os.makedirs(osp.dirname(dst)) if from_gdrive: gdown.download(url, dst, quiet=False) else: raise NotImplementedError print('Extracting file ...') try: tar = tarfile.open(dst) tar.extractall(path=osp.dirname(dst)) tar.close() except: zip_ref = zipfile.ZipFile(dst, 'r') zip_ref.extractall(osp.dirname(dst)) zip_ref.close() print('File extracted to {}'.format(osp.dirname(dst))) def generate_fewshot_dataset( self, *data_sources, num_shots=-1, repeat=True ): """Generate a few-shot dataset (typically for the training set). This function is useful when one wants to evaluate a model in a few-shot learning setting where each class only contains a few number of images. Args: data_sources: each individual is a list containing Datum objects. num_shots (int): number of instances per class to sample. repeat (bool): repeat images if needed. """ if num_shots < 1: if len(data_sources) == 1: return data_sources[0] return data_sources print(f'Creating a {num_shots}-shot dataset') output = [] for data_source in data_sources: tracker = self.split_dataset_by_label(data_source) dataset = [] for label, items in tracker.items(): if len(items) >= num_shots: sampled_items = random.sample(items, num_shots) else: if repeat: sampled_items = random.choices(items, k=num_shots) else: sampled_items = items dataset.extend(sampled_items) output.append(dataset) if len(output) == 1: return output[0] return output def split_dataset_by_label(self, data_source): """Split a dataset, i.e. a list of Datum objects, into class-specific groups stored in a dictionary. Args: data_source (list): a list of Datum objects. """ output = defaultdict(list) for item in data_source: output[item.label].append(item) return output def split_dataset_by_domain(self, data_source): """Split a dataset, i.e. a list of Datum objects, into domain-specific groups stored in a dictionary. Args: data_source (list): a list of Datum objects. """ output = defaultdict(list) for item in data_source: output[item.domain].append(item) return output class DatasetWrapper(TorchDataset): def __init__(self, data_source, input_size, transform=None, is_train=False, return_img0=False, k_tfm=1): self.data_source = data_source self.transform = transform # accept list (tuple) as input self.is_train = is_train # Augmenting an image K>1 times is only allowed during training self.k_tfm = k_tfm if is_train else 1 self.return_img0 = return_img0 if self.k_tfm > 1 and transform is None: raise ValueError( 'Cannot augment the image {} times ' 'because transform is None'.format(self.k_tfm) ) # Build transform that doesn't apply any data augmentation interp_mode = T.InterpolationMode.BICUBIC to_tensor = [] to_tensor += [T.Resize(input_size, interpolation=interp_mode)] to_tensor += [T.ToTensor()] normalize = T.Normalize( mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) ) to_tensor += [normalize] self.to_tensor = T.Compose(to_tensor) def __len__(self): return len(self.data_source) def __getitem__(self, idx): item = self.data_source[idx] output = { 'label': item.label, 'domain': item.domain, 'impath': item.impath } img0 = read_image(item.impath) if self.transform is not None: if isinstance(self.transform, (list, tuple)): for i, tfm in enumerate(self.transform): img = self._transform_image(tfm, img0) keyname = 'img' if (i + 1) > 1: keyname += str(i + 1) output[keyname] = img else: img = self._transform_image(self.transform, img0) output['img'] = img if self.return_img0: output['img0'] = self.to_tensor(img0) return output['img'], output['label'], output['impath'] def _transform_image(self, tfm, img0): img_list = [] for k in range(self.k_tfm): img_list.append(tfm(img0)) img = img_list if len(img) == 1: img = img[0] return img def build_data_loader( data_source=None, batch_size=64, input_size=224, tfm=None, is_train=True, shuffle=False, dataset_wrapper=None ): if dataset_wrapper is None: dataset_wrapper = DatasetWrapper # Build data loader data_loader = torch.utils.data.DataLoader( dataset_wrapper(data_source, input_size=input_size, transform=tfm, is_train=is_train), batch_size=batch_size, num_workers=8, shuffle=shuffle, drop_last=False, pin_memory=(torch.cuda.is_available()) ) assert len(data_loader) > 0 return data_loader