Files
clip-symnets/datasets/dtd.py
2024-05-21 19:41:56 +08:00

80 lines
2.5 KiB
Python

import os
import random
from .utils import Datum, DatasetBase, listdir_nohidden
from .oxford_pets import OxfordPets
template = ['{} texture.']
class DescribableTextures(DatasetBase):
dataset_dir = 'dtd'
def __init__(self, root, num_shots):
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.image_dir = os.path.join(self.dataset_dir, 'images')
self.split_path = os.path.join(self.dataset_dir, 'split_zhou_DescribableTextures.json')
self.template = template
train, val, test = OxfordPets.read_split(self.split_path, self.image_dir)
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
super().__init__(train_x=train, val=val, test=test)
@staticmethod
def read_and_split_data(
image_dir,
p_trn=0.5,
p_val=0.2,
ignored=[],
new_cnames=None
):
# The data are supposed to be organized into the following structure
# =============
# images/
# dog/
# cat/
# horse/
# =============
categories = listdir_nohidden(image_dir)
categories = [c for c in categories if c not in ignored]
categories.sort()
p_tst = 1 - p_trn - p_val
print(f'Splitting into {p_trn:.0%} train, {p_val:.0%} val, and {p_tst:.0%} test')
def _collate(ims, y, c):
items = []
for im in ims:
item = Datum(
impath=im,
label=y, # is already 0-based
classname=c
)
items.append(item)
return items
train, val, test = [], [], []
for label, category in enumerate(categories):
category_dir = os.path.join(image_dir, category)
images = listdir_nohidden(category_dir)
images = [os.path.join(category_dir, im) for im in images]
random.shuffle(images)
n_total = len(images)
n_train = round(n_total * p_trn)
n_val = round(n_total * p_val)
n_test = n_total - n_train - n_val
assert n_train > 0 and n_val > 0 and n_test > 0
if new_cnames is not None and category in new_cnames:
category = new_cnames[category]
train.extend(_collate(images[:n_train], label, category))
val.extend(_collate(images[n_train:n_train+n_val], label, category))
test.extend(_collate(images[n_train+n_val:], label, category))
return train, val, test