Files
clip-symnets/datasets/utils.py
2024-05-21 19:41:56 +08:00

378 lines
10 KiB
Python

import os
import random
import os.path as osp
import tarfile
import zipfile
from collections import defaultdict
import gdown
import json
import torch
from torch.utils.data import Dataset as TorchDataset
import torchvision.transforms as T
from PIL import Image
def read_json(fpath):
"""Read json file from a path."""
with open(fpath, 'r') as f:
obj = json.load(f)
return obj
def write_json(obj, fpath):
"""Writes to a json file."""
if not osp.exists(osp.dirname(fpath)):
os.makedirs(osp.dirname(fpath))
with open(fpath, 'w') as f:
json.dump(obj, f, indent=4, separators=(',', ': '))
def read_image(path):
"""Read image from path using ``PIL.Image``.
Args:
path (str): path to an image.
Returns:
PIL image
"""
if not osp.exists(path):
raise IOError('No file exists at {}'.format(path))
while True:
try:
img = Image.open(path).convert('RGB')
return img
except IOError:
print(
'Cannot read image from {}, '
'probably due to heavy IO. Will re-try'.format(path)
)
def listdir_nohidden(path, sort=False):
"""List non-hidden items in a directory.
Args:
path (str): directory path.
sort (bool): sort the items.
"""
items = [f for f in os.listdir(path) if not f.startswith('.') and 'sh' not in f]
if sort:
items.sort()
return items
class Datum:
"""Data instance which defines the basic attributes.
Args:
impath (str): image path.
label (int): class label.
domain (int): domain label.
classname (str): class name.
"""
def __init__(self, impath='', label=0, domain=-1, classname=''):
assert isinstance(impath, str)
assert isinstance(label, int)
assert isinstance(domain, int)
assert isinstance(classname, str)
self._impath = impath
self._label = label
self._domain = domain
self._classname = classname
@property
def impath(self):
return self._impath
@property
def label(self):
return self._label
@property
def domain(self):
return self._domain
@property
def classname(self):
return self._classname
class DatasetBase:
"""A unified dataset class for
1) domain adaptation
2) domain generalization
3) semi-supervised learning
"""
dataset_dir = '' # the directory where the dataset is stored
domains = [] # string names of all domains
def __init__(self, train_x=None, train_u=None, val=None, test=None,t_sne=None):
self._train_x = train_x # labeled training data
self._train_u = train_u # unlabeled training data (optional)
self._val = val # validation data (optional)
self._test = test # test data
self._num_classes = self.get_num_classes(train_x)
self._lab2cname, self._classnames = self.get_lab2cname(train_x)
@property
def train_x(self):
return self._train_x
@property
def train_u(self):
return self._train_u
@property
def val(self):
return self._val
@property
def test(self):
return self._test
@property
def lab2cname(self):
return self._lab2cname
@property
def classnames(self):
return self._classnames
@property
def num_classes(self):
return self._num_classes
def get_num_classes(self, data_source):
"""Count number of classes.
Args:
data_source (list): a list of Datum objects.
"""
label_set = set()
for item in data_source:
label_set.add(item.label)
return max(label_set) + 1
def get_lab2cname(self, data_source):
"""Get a label-to-classname mapping (dict).
Args:
data_source (list): a list of Datum objects.
"""
container = set()
for item in data_source:
container.add((item.label, item.classname))
mapping = {label: classname for label, classname in container}
labels = list(mapping.keys())
labels.sort()
classnames = [mapping[label] for label in labels]
return mapping, classnames
def check_input_domains(self, source_domains, target_domains):
self.is_input_domain_valid(source_domains)
self.is_input_domain_valid(target_domains)
def is_input_domain_valid(self, input_domains):
for domain in input_domains:
if domain not in self.domains:
raise ValueError(
'Input domain must belong to {}, '
'but got [{}]'.format(self.domains, domain)
)
def download_data(self, url, dst, from_gdrive=True):
if not osp.exists(osp.dirname(dst)):
os.makedirs(osp.dirname(dst))
if from_gdrive:
gdown.download(url, dst, quiet=False)
else:
raise NotImplementedError
print('Extracting file ...')
try:
tar = tarfile.open(dst)
tar.extractall(path=osp.dirname(dst))
tar.close()
except:
zip_ref = zipfile.ZipFile(dst, 'r')
zip_ref.extractall(osp.dirname(dst))
zip_ref.close()
print('File extracted to {}'.format(osp.dirname(dst)))
def generate_fewshot_dataset(
self, *data_sources, num_shots=-1, repeat=True
):
"""Generate a few-shot dataset (typically for the training set).
This function is useful when one wants to evaluate a model
in a few-shot learning setting where each class only contains
a few number of images.
Args:
data_sources: each individual is a list containing Datum objects.
num_shots (int): number of instances per class to sample.
repeat (bool): repeat images if needed.
"""
if num_shots < 1:
if len(data_sources) == 1:
return data_sources[0]
return data_sources
print(f'Creating a {num_shots}-shot dataset')
output = []
for data_source in data_sources:
tracker = self.split_dataset_by_label(data_source)
dataset = []
for label, items in tracker.items():
if len(items) >= num_shots:
sampled_items = random.sample(items, num_shots)
else:
if repeat:
sampled_items = random.choices(items, k=num_shots)
else:
sampled_items = items
dataset.extend(sampled_items)
output.append(dataset)
if len(output) == 1:
return output[0]
return output
def split_dataset_by_label(self, data_source):
"""Split a dataset, i.e. a list of Datum objects,
into class-specific groups stored in a dictionary.
Args:
data_source (list): a list of Datum objects.
"""
output = defaultdict(list)
for item in data_source:
output[item.label].append(item)
return output
def split_dataset_by_domain(self, data_source):
"""Split a dataset, i.e. a list of Datum objects,
into domain-specific groups stored in a dictionary.
Args:
data_source (list): a list of Datum objects.
"""
output = defaultdict(list)
for item in data_source:
output[item.domain].append(item)
return output
class DatasetWrapper(TorchDataset):
def __init__(self, data_source, input_size, transform=None, is_train=False,
return_img0=False, k_tfm=1):
self.data_source = data_source
self.transform = transform # accept list (tuple) as input
self.is_train = is_train
# Augmenting an image K>1 times is only allowed during training
self.k_tfm = k_tfm if is_train else 1
self.return_img0 = return_img0
if self.k_tfm > 1 and transform is None:
raise ValueError(
'Cannot augment the image {} times '
'because transform is None'.format(self.k_tfm)
)
# Build transform that doesn't apply any data augmentation
interp_mode = T.InterpolationMode.BICUBIC
to_tensor = []
to_tensor += [T.Resize(input_size, interpolation=interp_mode)]
to_tensor += [T.ToTensor()]
normalize = T.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
)
to_tensor += [normalize]
self.to_tensor = T.Compose(to_tensor)
def __len__(self):
return len(self.data_source)
def __getitem__(self, idx):
item = self.data_source[idx]
output = {
'label': item.label,
'domain': item.domain,
'impath': item.impath
}
img0 = read_image(item.impath)
if self.transform is not None:
if isinstance(self.transform, (list, tuple)):
for i, tfm in enumerate(self.transform):
img = self._transform_image(tfm, img0)
keyname = 'img'
if (i + 1) > 1:
keyname += str(i + 1)
output[keyname] = img
else:
img = self._transform_image(self.transform, img0)
output['img'] = img
if self.return_img0:
output['img0'] = self.to_tensor(img0)
return output['img'], output['label'], output['impath']
def _transform_image(self, tfm, img0):
img_list = []
for k in range(self.k_tfm):
img_list.append(tfm(img0))
img = img_list
if len(img) == 1:
img = img[0]
return img
def build_data_loader(
data_source=None,
batch_size=64,
input_size=224,
tfm=None,
is_train=True,
shuffle=False,
dataset_wrapper=None
):
if dataset_wrapper is None:
dataset_wrapper = DatasetWrapper
# Build data loader
data_loader = torch.utils.data.DataLoader(
dataset_wrapper(data_source, input_size=input_size, transform=tfm, is_train=is_train),
batch_size=batch_size,
num_workers=8,
shuffle=shuffle,
drop_last=False,
pin_memory=(torch.cuda.is_available())
)
assert len(data_loader) > 0
return data_loader