Files
DAPT/datasets/imagenet.py
2025-10-07 22:42:55 +08:00

93 lines
3.7 KiB
Python

import os
import pickle
from collections import OrderedDict
from dassl.data.datasets import DATASET_REGISTRY, Datum, DatasetBase
from dassl.utils import listdir_nohidden, mkdir_if_missing
from .oxford_pets import OxfordPets
from random import sample
@DATASET_REGISTRY.register()
class ImageNet(DatasetBase):
dataset_dir = "imagenet"
def __init__(self, cfg):
root = os.path.abspath(os.path.expanduser(cfg.DATASET.ROOT))
self.dataset_dir = os.path.join(root, self.dataset_dir)
self.image_dir = os.path.join(self.dataset_dir, "images")
self.preprocessed = os.path.join(self.dataset_dir, "preprocessed.pkl")
self.split_fewshot_dir = os.path.join(self.dataset_dir, "split_fewshot")
mkdir_if_missing(self.split_fewshot_dir)
if os.path.exists(self.preprocessed):
with open(self.preprocessed, "rb") as f:
preprocessed = pickle.load(f)
train = preprocessed["train"]
test = preprocessed["test"]
else:
text_file = os.path.join(self.dataset_dir, "classnames.txt")
classnames = self.read_classnames(text_file)
train = self.read_data(classnames, "train")
# Follow standard practice to perform evaluation on the val set
# Also used as the val set (so evaluate the last-step model)
test = self.read_data(classnames, "val")
preprocessed = {"train": train, "test": test}
with open(self.preprocessed, "wb") as f:
pickle.dump(preprocessed, f, protocol=pickle.HIGHEST_PROTOCOL)
num_shots = cfg.DATASET.NUM_SHOTS
if num_shots >= 1000:
seed = cfg.SEED
preprocessed = os.path.join(self.split_fewshot_dir, f"shot_{num_shots}-seed_{seed}.pkl")
if os.path.exists(preprocessed):
print(f"Loading preprocessed few-shot data from {preprocessed}")
with open(preprocessed, "rb") as file:
data = pickle.load(file)
train = data["train"]
else:
train = self.generate_fewshot_dataset(train, num_shots=num_shots)
data = {"train": train}
print(f"Saving preprocessed few-shot data to {preprocessed}")
with open(preprocessed, "wb") as file:
pickle.dump(data, file, protocol=pickle.HIGHEST_PROTOCOL)
subsample = cfg.DATASET.SUBSAMPLE_CLASSES
train, test = OxfordPets.subsample_classes(train, test, subsample=subsample)
super().__init__(train_x=sample(train,int(len(train)*0.8)), val=sample(test,5000), test=test)
@staticmethod
def read_classnames(text_file):
"""Return a dictionary containing
key-value pairs of <folder name>: <class name>.
"""
classnames = OrderedDict()
with open(text_file, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip().split(" ")
folder = line[0]
classname = " ".join(line[1:])
classnames[folder] = classname
return classnames
def read_data(self, classnames, split_dir):
split_dir = os.path.join(self.image_dir, split_dir)
folders = sorted(f.name for f in os.scandir(split_dir) if f.is_dir())
items = []
for label, folder in enumerate(folders): ##sub evaluation
imnames = listdir_nohidden(os.path.join(split_dir, folder))
classname = classnames[folder]
for imname in imnames:
impath = os.path.join(split_dir, folder, imname)
item = Datum(impath=impath, label=label, classname=classname)
items.append(item)
return items