39 lines
1.2 KiB
Bash
39 lines
1.2 KiB
Bash
#!/bin/bash
|
|
|
|
#cd ../..
|
|
|
|
# custom config
|
|
DATA="/home/ubuntu/Data_file/few_shot_data" #Your data path
|
|
TRAINER=MaPLe
|
|
|
|
DATASET=$1 #10 dataset from, like "stanford_cars"
|
|
CFG=vit_b16_t
|
|
MODE=dapt-g
|
|
|
|
#seed = ("0" "1" "2")
|
|
#method "Uniform" "Uncertainty" "Herding" "Submodular" "Glister" "GraNd" "Craig" "Cal" "Forgetting"
|
|
#sample_rate = 0.05 0.1 0.2 0.3 0.5 1.0 #"Uncertainty" "Herding"
|
|
# Normally method == "Uniform" and sample_rate = "1.0", which means no data selection process
|
|
|
|
for seed in 1 2 3; do
|
|
for rate in 1.0; do #
|
|
for shot in 1 2 4 8 16; do
|
|
for method in "Uniform"; do
|
|
echo "Running with seed =${seed} and sample rate=${rate} and Method=${method}"
|
|
CUDA_VISIBLE_DEVICES=1 python train.py \
|
|
--root ${DATA} \
|
|
--seed ${seed} \
|
|
--trainer ${TRAINER} \
|
|
--dataset-config-file configs/datasets/${DATASET}.yaml \
|
|
--config-file configs/trainers/${TRAINER}/${CFG}.yaml \
|
|
--output-dir output_few \
|
|
--mode ${MODE} \
|
|
DATASET.NUM_SHOTS ${shot} \
|
|
DATASET.SUBSAMPLE_CLASSES all \
|
|
DATASET.SELECTION_RATIO ${rate} \
|
|
DATASET.SELECTION_METHOD ${method}
|
|
done
|
|
done
|
|
done
|
|
done
|